Problem Set 4 (due Monday, May 7th)

A: Let $\theta = \sqrt{2 + \sqrt{2}}$. Let $K = \mathbb{Q}(\theta)$. Show that K/\mathbb{Q} is a Galois extension.

B: Let M be the splitting field for $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5)$ over \mathbb{Q} . Let K be the splitting field for $g(x) = x^{120} - 1$ over \mathbb{Q} . Prove that $M \subseteq K$. Furthermore, prove that $M \neq K$.

C: Let $n \ge 1$. Let $\zeta_n = e^{\frac{2\pi i}{n}}$. Suppose that F is a subfield of \mathbb{C} and that $\mathbb{Q}(\zeta_n) \subseteq F$. Suppose that $\gamma \in F$. Let β denote one of the roots of the polynomial $f(x) = x^n - \gamma$ in \mathbb{C} . Let K denote the splitting field for f(x) over F. Prove that $K = F(\beta)$. Let G = Gal(K/F). Prove that G is a cyclic group and that |G| divides n.

D. The Eisenstein criterion implies that the polynomial $f(x) = x^5 - 2$ is irreducible over \mathbb{Q} . Let K denote the splitting field for f(x) over \mathbb{Q} . Let F denote the splitting field for $x^5 - 1$ over \mathbb{Q} .

- (a) Prove that $F \subseteq K$.
- (b) Prove that $[K : \mathbb{Q}] = 20$.
- (c) Prove that f(x) is irreducible over F and that K is the splitting field for f(x) over F.
- (d) Prove that Gal(K/F) is a cyclic group of order 5.