Some Practice Questions for the Math 404 Midterm

1. Consider $K = \mathbb{Q}(\sqrt{2}, \sqrt{-2}, \sqrt[4]{5})$. Prove that there exists a polynomial $g(x) \in \mathbb{Q}[x]$ with the following property:

K is the splitting field for g(x) over \mathbb{Q} .

Justify your answer carefully.

2. Give an example of two subfields F and L of \mathbb{C} . with the following properties:

$$[F: \mathbf{Q}] = [L: \mathbf{Q}] = 5$$
, F and L are isomorphic as fields, but $F \neq L$.

Justify your answer carefully.

3. Consider the polynomial $f(x) = x^3 + x + 3$ in $\mathbb{Q}[x]$. This polynomial has three distinct roots in \mathbb{C} , but only one root in \mathbb{R} . (You may use this fact in this question. Don't bother to verify it.) Suppose that β_1 is the root in \mathbb{R} and that β_2 and β_3 are the roots which are not in \mathbb{R} .

- (a) Prove that the fields $\mathbb{Q}(\beta_1)$, $\mathbb{Q}(\beta_2)$, and $\mathbb{Q}(\beta_3)$ are isomorphic to each other.
- (b) Prove that $\mathbb{Q}(\beta_1) \neq \mathbb{Q}(\beta_2)$.
- (c) Prove that $\mathbb{Q}(\beta_3) \neq \mathbb{Q}(\beta_2)$.
- (d) Find the minimal polynomial for β_2 over \mathbb{Q} . Justify your answer.
- (e) Find the minimal polynomial for β_1 over \mathbb{R} . Justify your answer.
- (f) Find the minimal polynomial for β_2 over \mathbb{R} . Justify your answer.

4. This question concerns the following complex numbers:

$$\zeta_5 = \cos(2\pi/5) + \sin(2\pi/5)i$$
 and $\beta = (\zeta_5 - 1)^{-4}$

Does there exists a polynomial $f(x) \in \mathbb{Q}[x]$ with the following property: $f(\zeta_5) = \beta$? Justify your answer carefully.

5. Let $\theta = \sqrt{2} + i$. Consider the field $K = \mathbb{Q}(\theta)$. Carefully determine $[K : \mathbb{Q}]$. Furthermore, prove that every element of $Aut(K/\mathbb{Q})$ has order 1 or 2.