Problem Set 5 (due Monday, May 14th)

A: This question concerns the following polynomial:

$$g(x) = x^7 - 12x^6 + 39x^5 + 21x^4 - 27x^3 + 3x + 6$$

Let θ denote one of the roots of g(x) in \mathbb{C} . Let $K = \mathbb{Q}(\theta)$. Consider the following two elements of the field K:

$$\gamma = 2 + 3\theta + 6\theta^2 - 7\theta^4$$
, $\delta = \frac{4 + 7\theta + 2\theta^2 - 4\theta^3}{3 + 8\theta + 3\theta^3 - 5\theta^4 + 2\theta^6}$

Prove carefully that there exists a polynomial f(x) in $\mathbb{Q}[x]$ such that $f(\gamma) = \delta$.

B: Suppose that K is a finite Galois extension of \mathbb{Q} and that $Gal(K/\mathbb{Q}) \cong S_5$. Show that K cannot contain $\sqrt[5]{2}$.

C: Suppose that $f(x) \in \mathbb{Q}[x]$ and that f(x) has degree 4. Let K be the splitting field for f(x) over \mathbb{Q} . Suppose that $Gal(K/\mathbb{Q}) \cong S_4$. Prove that f(x) is irreducible over \mathbb{Q} .

D: Prove that there exist four complex numbers $\beta_1, \beta_2, \beta_3, \beta_4$ satisfying the following four equations:

$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 1, \qquad \beta_1 \beta_2 \beta_3 + \beta_1 \beta_2 \beta_4 + \beta_1 \beta_3 \beta_4 + \beta_2 \beta_3 \beta_4 = 1 \beta_1 \beta_2 + \beta_1 \beta_3 + \beta_1 \beta_4 + \beta_2 \beta_3 + \beta_2 \beta_4 + \beta_3 \beta_4 = 1, \qquad \beta_1 \beta_2 \beta_3 \beta_4 = 1 .$$

Furthermore, show that $\beta_1, \beta_2, \beta_3, \beta_4$ are algebraic over \mathbb{Q} . Let $K = \mathbb{Q}(\beta_1, \beta_2, \beta_3, \beta_4)$. Determine $[K : \mathbb{Q}]$. Show that $K = \mathbb{Q}(\beta_1)$.

E:. This is a continuation of problem **D** on problem set 4. That question concerned the polynomial $f(x) = x^5 - 2$. Recall that K denotes the splitting field for f(x) over \mathbb{Q} and that F denotes the splitting field for $x^5 - 1$ over \mathbb{Q} . Recall also that $\mathbb{Q} \subset F \subset K$ and that $[K:\mathbb{Q}] = 20$. We know that K is a finite Galois extension of \mathbb{Q} . Let $G = Gal(K/\mathbb{Q})$ and let N = Gal(K/F). Prove that N is a normal subgroup of G, that N is a cyclic group of order 5, and that G/N is a cyclic group of order 4. Furthermore, prove that G is a nonabelian group.