QUESTION 1. In each part of this question, you should find a polynomial f(x) with certain properties. The polynomial f(x) should be in $\mathbf{Q}[x]$ and have degree 4. The polynomial f(x) should be monic and irreducible over \mathbf{Q} . Please note that your answer in each part should be an example of a polynomial f(x) having the above properties as well as one additional property. We repeat that we want deg(f(x)) = 4 and we want f(x) to be irreducible over \mathbf{Q} . Your answers should be justified.

We will let K denote the field $\mathbf{Q}(\theta)$ where θ is one of the roots of f(x) in C.

(a) The field K is the splitting field over Q for the polynomial f(x).

SOLUTION: We will let $f(x) = x^4 + x^3 + x^2 + x + 1$. The roots of this polynomial are $\{\omega^i \mid 1 \le i \le 4\}$ where $\omega = \cos(\frac{2\pi}{5}) + \sin(\frac{2\pi}{5})i$. We proved in class that f(x) is irreducible over **Q**. It obviously is monic and has degree 4. The splitting field for f(x) over **Q** is

$$\mathbf{Q}(\omega,\omega^2,\omega^3,\omega^4) = \mathbf{Q}(\omega) = K$$

if we take $\theta = \omega$. It actually doesn't matter which root θ of f(X) we choose. The reason is that if θ' is any one of the other roots of f(x) in **C**, then $\theta' \in K$ and hence $\mathbf{Q}(\theta') \subseteq K$. Thus, $\mathbf{Q}(\theta') \subseteq \mathbf{Q}(\theta)$. But both θ and θ' have the same minimal polynomial over **Q**, namely f(x). Hence both of the fields $\mathbf{Q}(\theta')$ and $\mathbf{Q}(\theta)$ are extensions of **Q** of degree 4. Therefore, the inclusion must be an equality. That is, $\mathbf{Q}(\theta') = \mathbf{Q}(\theta)$.

(b) The field K is not the splitting field over \mathbf{Q} for the polynomial f(x).

SOLUTION: For this part, let $f(x) = x^4 - 2$. Then f(x) is monic and has degree 4 and is also irreducible over \mathbf{Q} . The irreducibility over \mathbf{Q} follows immediately from the Eisenstein Criterion for p = 2. One root is $\theta = \sqrt[4]{2}$ which is a real number. But $K = \mathbf{Q}(\theta)$ is a subfield of \mathbf{R} and therefore cannot contain all the roots of f(x) in \mathbf{C} . The reason is that $\sqrt[4]{2}i$ is another root of f(x) in \mathbf{C} and is obviously not in \mathbf{R} . Therefore, that root of f(x) cannot be in K. Therefore, K is not the splitting field for f(x) over \mathbf{Q} .

QUESTION 2. This question concerns the following polynomial:

$$g(x) = x^{35} - 12x^{26} - 9x^{24} + 39x^{16} + 21x^{11} - 27x^4 + 3x + 6$$

Let θ denote one of the roots of g(x) in **C**. Let $K = \mathbf{Q}(\theta)$.

(a) Consider K as a vector space over \mathbf{Q} . Give a basis for this vector space. Justify your answer.

SOLUTION: Note that the polynomial g(x) is monic and irreducible over \mathbf{Q} . This follows immediately from the Eisenstein criterion for p = 3. Therefore, g(x) must be the minimal polynomial for θ over \mathbf{Q} . Hence

$$[K:\mathbf{Q}] = deg(g(x)) = 35 .$$

Thus, K is a vector space over \mathbf{Q} of dimension 35. As discussed in class, the following set is a basis for K as a vector space over \mathbf{Q} :

$$\{1, \ \theta, \ \dots, \theta^{34}\} = \{\theta^i \mid 0 \le i \le 34\}$$

(b) Suppose that $\beta \in K$. Let h(x) be the minimal polynomial for β over \mathbf{Q} . Without knowing anything else about β , what can you say (if anything) about the degree of the polynomial h(x)? Justify your answer.

SOLUTION: Let $F = \mathbf{Q}(\beta)$. Since $\beta \in K$, we have $\mathbf{Q} \subseteq F \subseteq K$. Consequently,

$$35 = [K : \mathbf{Q}] = [K : F][F : \mathbf{Q}]$$

and therefore $[F : \mathbf{Q}]$ must divide 35. We know that $[F : \mathbf{Q}] = deg(h(x))$. Therefore, deg(h(x)) must divide 35. The possible values of deg(h(x)) are 1, 5, 7, or 35.

(c) Carefully prove that there exists a polynomial $f(x) \in \mathbf{Q}[x]$ such that $f(\theta^3) = \theta$.

SOLUTION: Let $\beta = \theta^3$. Then $\beta \in K$. As in part (b), let $F = \mathbf{Q}(\beta)$. The argument in part (b) makes it clear that [K : F] must divide 35. Thus, [K : F] = 1, 5, 7, or 35. Now notice that

$$K = \mathbf{Q}(\theta) \subseteq F(\theta) \subseteq K$$

It follows that $K = F(\theta)$. Let m(x) be the minimal polynomial for θ over F. Hence [K:F] = deg(m(x)). We make the following observation. Since $\beta = \theta^3$, it follows that θ is a root of $x^3 - \beta$. Since $\beta \in F$, the polynomial $x^3 - \beta$ is in F[x]. Since θ is a root of $x^3 - \beta$, it therefore follows that m(x) divides $x^3 - \beta$ in F[x]. Therefore, it is clear that

$$deg(m(x)) \leq deg(x^3 - \beta) = 3$$
 .

Therefore, $[K : F] \leq 3$. Combining that with the fact that [K : F] = 1, 5, 7, or 35, it follows that [K : F] = 1. Therefore, we must have F = K.

We have proved that $K = \mathbf{Q}(\beta)$. Since K is a finite extension of \mathbf{Q} , we know that β is algebraic over \mathbf{Q} and therefore that $K = \mathbf{Q}(\beta) = \mathbf{Q}[\beta]$. Since $\theta \in K$, there must exist a polynomial $f(x) \in \mathbf{Q}[x]$ such that $f(\beta) = \theta$. Therefore, $f(\theta^3) = \theta$.

QUESTION 3. (35 points) Consider the polynomial $g(x) = x^5 - 2$. We know that g(x) is irreducible over **Q** by the Eisenstein criterion for p = 2. Thus, g(x) has five distinct roots in **C**. We can write

$$g(x) = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4)(x - \theta_5)$$

where $\theta_i \in \mathbf{C}$ for $1 \leq i \leq 5$. For each such *i*, let $F_i = \mathbf{Q}(\theta_i)$. Let $K = \mathbf{Q}(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)$.

(a) Prove that the five fields $F_1, ..., F_5$ are all distinct.

SOLUTION: Suppose that we take $\theta_1 = \sqrt[5]{2}$. Then $F_1 = \mathbf{Q}(\theta_1)$ is a subfield of **R**. The other four roots of g(x) in **C** are obviously not in **R**. Hence the fields F_2 , F_3 , F_4 , F_5 are not subfields of **R**. Hence those four fields are not equal to F_1 . It will be useful to remark that F_1 contains only one root of the polynomial g(x), namely the root θ_1 .

We now show that those four fields are distinct from each other. To show this, assume that $F_i = F_j$ where $2 \leq i, j \leq 4$. We will show that i = j. As we discussed in class, the five fields $F_1, ..., F_5$ are all isomorphic to each other over \mathbf{Q} . In particular, there is an isomorphism $\sigma : F_i \to F_1$ over \mathbf{Q} with the property that $\sigma(\theta_i) = \theta_1$. Since we are assuming that $F_j = F_i$, it follows that $\theta_j \in F_i$. Since $g(\theta_j) = 0$ and $g(x) \in \mathbf{Q}[x]$, it follows that

$$g(\sigma(\theta_j)) = \sigma(g(\theta_j)) = \sigma(0) = 0$$
.

Of course, this is a familiar observation that we discussed in class. Now $\sigma(\theta_j) \in F_1$ and so $\sigma(\theta_j)$ is a root of g(x) in F_1 . As remarked above, it follows that $\sigma(\theta_j) = \theta_1$. But $\sigma(\theta_i) = \theta_1$ too. Since σ is an isomorphism, it is an injective map, and hence we must have $\theta_i = \theta_j$. This implies that i = j.

(b) Prove that $[K : \mathbf{Q}] = 20$.

SOLUTION: Let $\zeta_5 = e^{\frac{2\pi i}{5}}$. We know that $L = \mathbf{Q}(\zeta_5)$ is a subfield of K since both $\theta_1 = \sqrt[5]{2}$ and $\zeta_5 \theta_1 = \zeta_5 \sqrt[5]{2}$ are roots of g(x). Their ratio ζ_5 must be in K. Since K contains L and

K contains θ_1 , it is clear that K contains $\mathbf{Q}(\zeta_5, \theta_1)$. However, the five roots of $x^5 - 2$ are $\{\zeta_5^i \theta_1 \mid 0 \le i \le 4\}$, all of which are in $\mathbf{Q}(\zeta_5, \theta_1)$. It follows that K is contained in $\mathbf{Q}(\zeta_5, \theta_1)$. These remarks show that $K = \mathbf{Q}(\zeta_5, \theta_1)$.

Since $x^5 - 2$ is irreducible over \mathbf{Q} by the Eisenstein criterion for p = 2, it is clear that $x^5 - 2$ is the minimal polynomial for θ_1 over \mathbf{Q} . Let $F_1 = \mathbf{Q}(\theta_1)$ as above. It follows that $[F_1 : \mathbf{Q}] = 5$. Also, we proved in class that $[L : \mathbf{Q}] = 4$. Since $\mathbf{Q} \subseteq L \subseteq K$ and $\mathbf{Q} \subseteq F_1 \subseteq K$, it therefore follows that

$$[K:\mathbf{Q}] = [K:L][L:\mathbf{Q}] = 4[K:L] \qquad and \qquad [K:\mathbf{Q}] = [K:F_1][F_1:\mathbf{Q}] = 5[K:F_1]$$

Thus, $[K : \mathbf{Q}]$ must be divisible by both 4 and 5, and hence divisible by 20.

On the other hand $K = \mathbf{Q}(\zeta_5, \theta_1) = L(\theta_1)$. Since θ_1 is a root of $x^5 - 2 \in L[x]$, it follows that the minimal polynomial for θ_1 over L has degree at most 5. Hence $[K : L] \leq 5$. Therefore,

$$[K:\mathbf{Q}] = [K:L][L:\mathbf{Q}] = 4[K:L] \le 4 \cdot 5 = 20 .$$

Thus, we have shown that $[K : \mathbf{Q}] = 20q$ for some positive integer q and that $[K : \mathbf{Q}] \leq 20$. Combining these observations, we see that $[K : \mathbf{Q}] = 20$

(c) What can you say (if anything) about the order of the group $Aut(K/\mathbf{Q})$

SOLUTION: By definition, K is the splitting field over **Q** for the polynomial $x^5 - 2$. It follows that K is a finite Galois extension of **Q**. Therefore,

$$\left|Aut(K/\mathbf{Q})\right| = \left|Gal(K/\mathbf{Q})\right| = [K:\mathbf{Q}] = 20$$