
Solutions for the Midterm Exam for Math 404A–Spring, 2018

QUESTION 1. In each part of this question, you should find a polynomial f(x) with cer-
tain properties. The polynomial f(x) should be in Q[x] and have degree 4. The polynomial
f(x) should be monic and irreducible over Q. Please note that your answer in each part
should be an example of a polynomial f(x) having the above properties as well as one addi-
tional property. We repeat that we want deg

(
f(x)

)
= 4 and we want f(x) to be irreducible

over Q. Your answers should be justified.

We will let K denote the field Q(θ) where θ is one of the roots of f(x) in C.

(a) The field K is the splitting field over Q for the polynomial f(x).

SOLUTION: We will let f(x) = x4 + x3 + x2 + x + 1. The roots of this polynomial are
{ωi

∣∣ 1 ≤ i ≤ 4} where ω = cos(2π
5

) + sin(2π
5

)i. We proved in class that f(x) is irreducible
over Q. It obviously is monic and has degree 4. The splitting field for f(x) over Q is

Q(ω, ω2, ω3, ω4) = Q(ω) = K

if we take θ = ω. It actually doesn’t matter which root θ of f(X) we choose. The reason
is that if θ′ is any one of the other roots of f(x) in C, then θ′ ∈ K and hence Q(θ′) ⊆ K.
Thus, Q(θ′) ⊆ Q(θ). But both θ and θ′ have the same minimal polynomial over Q, namely
f(x). Hence both of the fields Q(θ′) and Q(θ) are extensions of Q of degree 4. Therefore,
the inclusion must be an equality. That is, Q(θ′) = Q(θ).

(b) The field K is not the splitting field over Q for the polynomial f(x).

SOLUTION:. For this part, let f(x) = x4− 2. Then f(x) is monic and has degree 4 and is
also irreducible over Q. The irreducibility over Q follows immediately from the Eisenstein
Criterion for p = 2. One root is θ = 4

√
2 which is a real number. But K = Q(θ) is a subfield

of R and therefore cannot contain all the roots of f(x) in C. The reason is that 4
√

2i is
another root of f(x) in C and is obviously not in R. Therefore, that root of f(x) cannot be
in K. Therefore, K is not the splitting field for f(x) over Q.

QUESTION 2. This question concerns the following polynomial:

g(x) = x35 − 12x26 − 9x24 + 39x16 + 21x11 − 27x4 + 3x+ 6 .
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Let θ denote one of the roots of g(x) in C. Let K = Q(θ).

(a) Consider K as a vector space over Q. Give a basis for this vector space. Justify your
answer.

SOLUTION: Note that the polynomial g(x) is monic and irreducible over Q. This follows
immediately from the Eisenstein criterion for p = 3. Therefore, g(x) must be the minimal
polynomial for θ over Q. Hence

[K : Q] = deg
(
g(x)

)
= 35 .

Thus, K is a vector space over Q of dimension 35. As discussed in class, the following set is
a basis for K as a vector space over Q:

{1, θ, . . ., θ34} = {θi
∣∣ 0 ≤ i ≤ 34 } .

(b) Suppose that β ∈ K. Let h(x) be the minimal polynomial for β over Q. Without
knowing anything else about β, what can you say (if anything) about the degree of the
polynomial h(x)? Justify your answer.

SOLUTION:. Let F = Q(β). Since β ∈ K, we have Q ⊆ F ⊆ K. Consequently,

35 = [K : Q] = [K : F ][F : Q]

and therefore [F : Q] must divide 35. We know that [F : Q] = deg
(
h(x)

)
. Therefore,

deg
(
h(x)

)
must divide 35. The possible values of deg

(
h(x)

)
are 1, 5, 7, or 35.

(c) Carefully prove that there exists a polynomial f(x) ∈ Q[x] such that f(θ3) = θ.

SOLUTION:. Let β = θ3. Then β ∈ K. As in part (b), let F = Q(β). The argument in
part (b) makes it clear that [K : F ] must divide 35. Thus, [K : F ] = 1, 5, 7, or 35. Now
notice that

K = Q(θ) ⊆ F (θ) ⊆ K

It follows that K = F (θ). Let m(x) be the minimal polynomial for θ over F . Hence
[K : F ] = deg

(
m(x)

)
. We make the following observation. Since β = θ3, it follows that θ is

a root of x3 − β. Since β ∈ F , the polynomial x3 − β is in F [x]. Since θ is a root of x3 − β,
it therefore follows that m(x) divides x3 − β in F [x]. Therefore, it is clear that

deg
(
m(x)

)
≤ deg

(
x3 − β

)
= 3 .
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Therefore, [K : F ] ≤ 3. Combining that with the fact that [K : F ] = 1, 5, 7, or 35, it
follows that [K : F ] = 1. Therefore, we must have F = K.

We have proved that K = Q(β). Since K is a finite extension of Q, we know that β is
algebraic over Q and therefore that K = Q(β) = Q[β]. Since θ ∈ K, there must exist a
polynomial f(x) ∈ Q[x] such that f(β) = θ. Therefore, f(θ3) = θ.

QUESTION 3. (35 points) Consider the polynomial g(x) = x5 − 2. We know that g(x)
is irreducible over Q by the Eisenstein criterion for p = 2. Thus, g(x) has five distinct roots
in C. We can write

g(x) = (x− θ1)(x− θ2)(x− θ3)(x− θ4)(x− θ5)

where θi ∈ C for 1 ≤ i ≤ 5. For each such i, let Fi = Q(θi). Let K = Q(θ1, θ2, θ3, θ4, θ5).

(a) Prove that the five fields F1, ..., F5 are all distinct.

SOLUTION:. Suppose that we take θ1 = 5
√

2. Then F1 = Q(θ1) is a subfield of R. The
other four roots of g(x) in C are obviously not in R. Hence the fields F2, F3, F4, F5 are
not subfields of R. Hence those four fields are not equal to F1. It will be useful to remark
that F1 contains only one root of the polynomial g(x), namely the root θ1.

We now show that those four fields are distinct from each other. To show this, assume
that Fi = Fj where 2 ≤ i, j ≤ 4. We will show that i = j. As we discussed in class,
the five fields F1, ..., F5 are all isomorphic to each other over Q. In particular, there is an
isomorphism σ : Fi → F1 over Q with the property that σ(θi) = θ1. Since we are assuming
that Fj = Fi, it follows that θj ∈ Fi. Since g(θj) = 0 and g(x) ∈ Q[x], it follows that

g
(
σ(θj)

)
= σ

(
g(θj)

)
= σ(0) = 0 .

Of course, this is a familiar observation that we discussed in class. Now σ(θj) ∈ F1 and so
σ(θj) is a root of g(x) in F1. As remarked above, it follows that σ(θj) = θ1. But σ(θi) = θ1
too. Since σ is an isomorphism, it is an injective map, and hence we must have θi = θj. This
implies that i = j.

(b) Prove that [K : Q] = 20.

SOLUTION: Let ζ5 = e
2πi
5 . We know that L = Q(ζ5) is a subfield of K since both θ1 = 5

√
2

and ζ5θ1 = ζ5
5
√

2 are roots of g(x). Their ratio ζ5 must be in K. Since K contains L and

3



K contains θ1, it is clear that K contains Q(ζ5, θ1). However, the five roots of x5 − 2 are
{ζ i5θ1

∣∣ 0 ≤ i ≤ 4 }, all of which are in Q(ζ5, θ1). It follows that K is contained in Q(ζ5, θ1).
These remarks show that K = Q(ζ5, θ1).

Since x5 − 2 is irreducible over Q by the Eisenstein criterion for p = 2, it is clear that
x5 − 2 is the minimal polynomial for θ1 over Q. Let F1 = Q(θ1) as above. It follows that
[F1 : Q] = 5. Also, we proved in class that [L : Q] = 4. Since Q ⊆ L ⊆ K and Q ⊆ F1 ⊆ K,
it therefore follows that

[K : Q] = [K : L][L : Q] = 4[K : L] and [K : Q] = [K : F1][F1 : Q] = 5[K : F1] .

Thus, [K : Q] must be divisible by both 4 and 5, and hence divisible by 20.

On the other hand K = Q(ζ5, θ1) = L(θ1). Since θ1 is a root of x5 − 2 ∈ L[x], it
follows that the minimal polynomial for θ1 over L has degree at most 5. Hence [K : L] ≤ 5.
Therefore,

[K : Q] = [K : L][L : Q] = 4[K : L] ≤ 4 · 5 = 20 .

Thus, we have shown that [K : Q] = 20q for some positive integer q and that [K : Q] ≤ 20.
Combining these observations, we see that [K : Q] = 20

(c) What can you say (if anything) about the order of the group Aut(K/Q)

SOLUTION:. By definition, K is the splitting field over Q for the polynomial x5 − 2. It
follows that K is a finite Galois extension of Q. Therefore,∣∣Aut(K/Q)

∣∣ =
∣∣Gal(K/Q)

∣∣ = [K : Q] = 20 .
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