GALOIS THEORY

We will assume on this handout that Ω is an algebraically closed field. This means that every irreducible polynomial in $\Omega[x]$ is of degree 1. Suppose that F is a subfield of Ω and that K is a finite extension of F contained in Ω . For example, we can take $\Omega = \mathbb{C}$, the field of complex numbers.

Definition: We will say that "K is a normal extension of F" if the following statement is true:

(1) If σ is any embedding of K into Ω over F, then $\sigma(K) = K$.

Equivalent statements. The following statements are equivalent to (1).

(2) There exists a polynomial $f(x) \in F[x]$ such that K is the splitting field for f(x) in Ω over F.

(3) If $\beta \in K$, then the minimal polynomial p(x) for β over F factors as a product of linear polynomials in K[x].

The basic propositions of Galois Theory

We will make the following assumptions in all of the propositions on this handout without further mention.

Assumption A: The field F is either a field of characteristic zero or a finite field.

Assumption B: The field K is a finite, normal extension of F.

Remark about terminology. If assumption **A** is satisfied, then "normal extensions" of F are also called "Galois extensions" of F. For such extensions, Aut(K/F) is usually denoted by Gal(K/F).

Proposition 1: |Gal(K/F)| = [K:F].

Proposition 2: Suppose that L is a normal extension of F contained in K. Consider the map

$$\lambda: Gal(K/F) \longrightarrow Gal(L/F)$$

defined by $\lambda(\sigma) = \sigma|_L$ for all $\sigma \in Gal(K/F)$. Then λ is a surjective group homomorphism and $Ker(\lambda) = Gal(K/L)$. Consequently, Gal(K/L) is a normal subgroup of Gal(K/F) and we have a group isomorphism

 $Gal(K/F)/Gal(K/L) \cong Gal(L/F)$.

Proposition 3: Suppose that L is a subfield of K containing F. Let G = Gal(K/F) and let H = Gal(K/L). Then H is a subgroup of G and

$$L = K^H$$

where we define K^H by $K^H = \{a \in K \mid \sigma(a) = a \text{ for all } \sigma \in H \}.$

Proposition 4: Suppose that G = Gal(K/F). Suppose that H is a subgroup of G. Let $L = K^{H}$. Then we have

$$H = Gal(K/L)$$
.

Notation. We will let $Int_{K/F}$ denote the set of fields L satisfying $F \subseteq L \subseteq K$. This is the set of *intermediate fields* for the extension K/F. We will let $Sub_{K/F}$ denote the set of subgroups H of the group G = Gal(K/F).

Proposition 5: (The Fundamental Theorem of Galois Theory.) There is a one-to-one correspondence between the sets $Int_{K/F}$ and $Sub_{K/F}$ defined by the following maps Γ and Φ :

If $L \in Int_{K/F}$, define $\Gamma(L) = Gal(K/L)$.

If $H \in Sub_{K/F}$, define $\Phi(H) = K^H$.

The maps Γ and Φ are inverses of each other.

Proposition 6: Suppose that $L \in Int_{K/F}$ and $H \in Sub_{K/F}$ correspond to each other under the maps defined in proposition 5. Then [K : L] = |H| and [L : F] = [G : H].

Proposition 7: Suppose that L_1 and L_2 in $Int_{K/F}$ correspond to H_1 and H_2 in $Sub_{K/F}$, respectively, under the maps defined in proposition 5. Then $L_1 \subseteq L_2$ if and only if $H_2 \subseteq H_1$.

Proposition 8: Suppose that L_1 and L_2 in $Int_{K/F}$ correspond to H_1 and H_2 in $Sub_{K/F}$, respectively, under the maps defined in proposition 5. Then L_1 is isomorphic to L_2 over F if and only if H_1 and H_2 are conjugate in G.

Proposition 9: Suppose that $L \in Int_{K/F}$ and $H \in Sub_{K/F}$ correspond to each other under the maps defined in proposition 5. Then L is a normal extension of F if and only if H is a normal subgroup of G.