Basic definitions concerning rings.

Definition: A nonempty set R is said to be a **ring** if there are two binary operations on R, denoted by + and \cdot , which satisfy the following requirements:

- (a) If $a, b \in R$, then $a + b \in R$.
- (b) For all $a, b \in R$, a + b = b + a.
- (c) For all $a, b, c \in R$, (a+b) + c = a + (b+c).
- (d) There exists an element $0 \in R$ such that a + 0 = a for all $a \in R$.
- (e) For any $a \in R$, there exists an element $b \in R$ such that a + b = 0.
- (f) If $a, b \in R$, then $a \cdot b \in R$.
- (g) For all $a, b, c \in R$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (h) For all $a, b, c \in R$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

Standard notation and terminology.

We will sometimes refer to 0 as the additive identity element of R. If $a \in R$, then the element b satisfying a + b = 0 is denoted by -a. We refer to -a as the additive inverse of a. If $a, b \in R$, then a + (-b) is denoted by a - b.

Requirements (a) - (e) mean that R is an abelian group under the operation +. We will refer to R under + (ignoring the operation \cdot) as the underlying additive group of R.

Additional definitions.

A subset S of a ring R is said to be a **subring of** R if S is a ring under the operations + and \cdot , restricted to pairs of elements of S.

If R and R' are rings, then we say that R and R' are **isomorphic** if there exists a bijective map $\phi: R \to R'$ such that, for all $a, b \in R$, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

Suppose that R and R' are rings. A map $\phi: R \to R'$ is said to be a **ring homomorphism** if, for all $a, b \in R$, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

Suppose that R is a ring. A nonempty subset I of R is said to be an **ideal of** R if I satisfies the following two requirements:

- (i) If $a, b \in I$, then $a + b \in I$ and $a b \in I$.
- (ii) If $a \in I$ and $r \in R$, then $r \cdot a \in I$ and $a \cdot r \in I$.

Some important types of rings.

Assume that R is a ring.

If there exists an element $1 \in R$ such that $1 \neq 0$ and $1 \cdot a = a \cdot 1 = a$ for all $a \in R$, then we say that R is a **ring with identity** or a **ring with unit**. The element 1, if it exists, is referred to as the *identity element* or the *unit element* of R.

If $a \cdot b = b \cdot a$ for all $a, b \in R$, then we say that R is a **commutative ring**.

If there exist elements $a, b \in R$ such that $a \neq 0$, $b \neq 0$, but ab = 0, then we say that R is a **ring with zero-divisors**. If no such pair of elements $a, b \in R$ exist, then we say that R is a **ring without zero-divisors**. A ring R without zero-divisors is often called a **domain**.

If R is a commutative ring without zero-divisors, then we say that R is an *integral domain*. (Note: Many texts on algebra also require that R be a ring with unit.)

Assume that R is a ring with identity. Assume also that, for all $a \in R$ such that $a \neq 0$, there exists an element $b \in R$ such that $a \cdot b = b \cdot a = 1$. We will then say that R is a **division** ring.

If R is a commutative division ring, then we say that R is a **field**.