Some Possible Midterm Questions

1: \quad Suppose that $a, m \in \mathbf{Z}$ and $m \geq 1$. Assume that $a^{9} \equiv 1(\bmod m)$. Prove that $\operatorname{gcd}(a, m)=1$.

2: \quad Suppose that a, b, c, and m are integers, that $m \geq 1$, and that $a b c \equiv 1(\bmod m)$. Prove that $\operatorname{gcd}(a, m)=1$.

3: Suppose that $e \in \mathbf{Z}$ and that $e \equiv-18(\bmod 11)$. What can you say (if anything) about the remainder that e gives when divided by 55 ?

4: \quad Suppose that $a \in \mathbf{Z}$ and that $(a+2)(a+4) \equiv 0(\bmod 13)$. What can you say (if anything) about the remainder that a gives when divided by 13 ?

5: Suppose that $b \in \mathbf{Z}$ and that b^{2} gives a remainder of 9 when divided by 103. Prove that b gives a remainder of either 3 or 100 when divided by 103 .

6: Suppose that b is an integer and that b^{2} gives a remainder of 2 when divided by 23 . Prove that b gives a remainder of 5 or 18 when divided by 23 .

7: Suppose that $u, v \in \mathbf{Z}$ and that $\operatorname{gcd}(u, v)=1$. As proved in class, we know that there exist integers a and b such that $a u+b v=1$. Based on this fact, show how to prove the following statement:

$$
\text { If } u, v, r \in \mathbf{Z}, \quad u \mid v r, \text { and } \operatorname{gcd}(u, v)=1, \text { then } u \mid r .
$$

(Remark: This statement to be proved is one of the versions of Euclid's Lemma.)

8: \quad Suppose that $a, b, c \in \mathbf{Z}$ and that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
TRUE OR FALSE: There exist integers e and f such that abe $+c^{2} f=5$.

9: What is the remainder when $2^{17} 5^{8} 4^{2} 13^{11}$ is divided by 7 ?
10 Let $n=5^{50}+13^{17}+3^{15}$. Prove that n gives a remainder of 26 when divided by 39 .
(Note that $39=3 \cdot 13$.)

