Question 1. Find *all* solutions to the congruence $13x \equiv 12 \pmod{35}$. Also, answer the following questions about the solutions to the above congruence. Are there solutions x such that x gives a remainder of 1 when divided by 48? Are there solutions x such that x gives a remainder of 1 when divided by 49?

Question 2. This question concerns the Diophantine equation $x^2 - 35y^2 = 11$. The purpose of this question is to prove that this Diophantine equation has no solutions. Suppose to the contrary that x = a and y = b is a solution to that equation, where $a, b \in \mathbb{Z}$. (a) Prove that qcd(a, 11) = 1 and qcd(b, 11) = 1.

(b) Show that $35b^2 \equiv a^2 \pmod{11}$. By raising both sides of this congruence to a certain power, show that you can obtain a contradiction.

Question 3. Find all solutions to the congruence $x^5 \equiv 1 \pmod{11213}$. (Remark: You may use the fact that 11213 is a prime.)

Question 4. Suppose that $a, b, c \in \mathbb{Z}$ and that m is a positive integer. Assume that gcd(a, m) = 1 and gcd(b, m) = 1. Assume that $c \equiv ab \pmod{m}$. Prove that $gcd(c^3, m) = 1$.

Question 6. Find all primes p such that $ord_p(-5) = 2$. Find all primes p such that $ord_p(-5) = 3$. Find all primes p such that $ord_p(3) = 8$.

Question 7. This question concerns the integer n = 100000001. Prove that if p is a prime which divides n, then $p \equiv 1 \pmod{16}$. The smallest prime p satisfying $p \equiv 1 \pmod{16}$ is p = 17. Prove that 17|n.

Question 8. Find the remainder when 185648291 is divided by 99.

Question 9. Find the remainder when $2^{19}5^813^{11}29^{18} - 3^{600}$ is divided by 7.