A: The question concerns the integer $n=2^{64}+1$.
(a) Prove that if p is a prime which divides n, then $p \equiv 1(\bmod 128)$.
(b) The smallest prime p satisfying $p \equiv 1(\bmod 128)$ is $p=257$. Prove that 257 does not divide n. (Hint: Notice that $257=2^{8}+1$ and hence that $2^{8}+1 \equiv 0(\bmod 257)$.)

B: Are there positive integers n with the following two properties: The last three digits of n (in base 10) are 111 and n gives a remainder of 32 when divided by 49 . What can you say about the number of such integers n in the interval $0<n<200,000$?

C: A certain integer c gives a remainder of 5 when divided by 15 . What can you say about the remainder that c gives when divided by 91 ?

D: Find all integers x such that $x \equiv 3(\bmod 5), \quad x \equiv 2(\bmod 7)$, and $x \equiv 8(\bmod 9)$.

E: Find all solutions to the congruence $x^{2}+1 \equiv 0(\bmod 130)$.

