A: Determine $\operatorname{ord}_{1155}(2)$.

B: Let $n=22^{23}-1$. Prove that n is divisible by 3 and by 7 , but not divisible by 9 .

C: Let $n=22^{23}-1$. Suppose that p is a prime that divides n. Prove that either $p=3$ or $p=7$ or $p \equiv 1(\bmod 46)$.

D: Let $n=22^{23}-1$. Prove that 47 does not divide n.

E: Prove that there are infinitely many positive integers n with the following two properties: All of the digits of n in base 10 are 1's and n is divisible by 49 .

F: This problem concerns Euler's φ-function (which is also sometimes called Euler's totient function). Compute

$$
\varphi(15), \quad \varphi(11), \quad \varphi\left(2^{99}\right), \quad \varphi(24)
$$

