PROBLEM SET 4 (due on Monday, May 7th)

A: Find all solutions to the following linear Diophantine equations:
(a) $56 x+72 y=40$
(b) $221 x+91 y=116$
(c) $221 x+91 y=117$
(d) $17 x+29 y=5$

B: Find all the solutions $z \in \mathbf{Z}$ to the following congruences:
(a) $56 z \equiv 40(\bmod 72)$
(b) $17 z \equiv 5(\bmod 29)$
(c) $29 z \equiv 5(\bmod 17)$.

C: Find all solutions to the equation $30 x+17 y=1701$, where x and y are positive integers.

D: A man has $\$ 4.55$ in change consisting entirely of dimes and quarters. What is the maximum number of coins that he can have? What is the minimum number of coins that he can have?

E: Compute the following quantities:

$$
\operatorname{ord}_{5}(2), \quad \operatorname{ord}_{7}(-2), \quad \operatorname{ord}_{23}(2), \quad \operatorname{ord}_{23}(5), \quad \operatorname{ord}_{35}(3)
$$

F: Let $p=11213$. It turns out that p is a prime. You may use that fact in this question. Find all integers b with the property that $\operatorname{ord}_{p}(b)=2$. Find all integers c such that $\operatorname{ord}_{p}(c)=3$.

