NUMBER THEORY PROBLEM SET 2 (due Friday, April 13th)

A: There exist primes p such that $p+6 k$ is also prime for $k=1,2$ and 3 . One such prime is $p=11$. Another such prime is $p=41$. Prove that there exists exactly one prime p such that $p+6 k$ is also prime for $k=1,2,3$ and 4 .

B: Prove that if $n \in \mathbf{Z}$, then n^{3} gives a remainder of 0,1 , or 6 when divided by 7 .

C: Prove that if n is an odd integer, then n is of the form $4 k+1$ or $4 k+3$, where $k \in \mathbf{Z}$.

D: Prove that if n is an odd integer, then n^{2} gives a remainder of 1 when divided by 8 .

E: Prove that if n is an even integer, then n^{2} gives a remainder of 0 or 4 when divided by 8 .

F: Let $d=\operatorname{gc} d(1189,215)$. Determine d. Furthermore, find integers m and n such that

$$
1189 m+215 n=d
$$

G: Consider the equation $x^{2}-6 y^{2}=10$. It turns out that this equation has infinitely many solutions where $x, y \in \mathbf{Z}$. Suppose that $x=a, y=b$ is one of those solutions. Prove that $(a, b)=1$.

