Solutions for the Midterm for Math 301A-Spring, 2018

QUESTION 1. Suppose that $a \in \mathbf{Z}$ and that $a \equiv-23(\bmod 17)$.
(a) Find the remainder that a gives when divided by 17 .

Solution: Notice that $-23 \equiv-23+2 \cdot 17(\bmod 17)$. That is, $-23 \equiv 11(\bmod 17)$. Therefore, we have $a \equiv 11(\bmod 17)$. Since $0 \leq 11<17$, it follows that a gives a remainder of 11 when divided by 17. We are using Congruence Proposition 11.
(b) What can you say (if anything) about the remainder that a gives when divided by 51 ?

Solution: First of all, if r denotes the remainder that a gives when divided by 51 . then

$$
a \equiv r \quad(\bmod 51) \quad \text { and } \quad 0 \leq r<51 .
$$

Notice that $17 \mid 51$. It follows that $a \equiv r(\bmod 17)$. We are using Congruence Proposition 9 here. Since $a \equiv 11(\bmod 17)$, we must have $r \equiv 11(\bmod 17)$. We are using the symmetric and transitive properties. Using the fact that $r \equiv 11(\bmod 17)$ together with the inequality $0 \leq r<51$, we find the following three possibilities for $r: r=11, r=28, r=45$

QUESTION 2. Suppose that p is a prime. Suppose that $a \in \mathbf{Z}$ and that $a^{2} \equiv 1(\bmod p)$. Prove that either $a \equiv 1(\bmod p)$ or that $a \equiv p-1(\bmod p)$.

Solution: Since $a^{2} \equiv 1(\bmod p)$, it follows that $p \mid\left(a^{2}-1\right)$. Therefore,

$$
p \mid(a-1)(a+1) .
$$

Thus p divides the product of two integers. Since p is a prime, we can use one of the versions of Euclid's Lemma to conclude that p divides one factor or the other. Thus, either $p \mid(a-1)$ or $p \mid(a+1)$. If $p \mid(a-1)$, then, by definition, it follows that $a \equiv 1(\bmod p)$. On the other hand, if $p \mid(a+1)$, then we have $a \equiv-1(\bmod p)$. Notice that $-1 \equiv-1+p(\bmod p)$. That is, we have $-1 \equiv p-1(\bmod p)$. Thus, if $a \equiv-1(\bmod p)$, then it follows that $a \equiv p-1$ $(\bmod p)$. In summary, we have proved that either $a \equiv 1(\bmod p)$ or $a \equiv p-1(\bmod p)$.

QUESTION 3. (20 points) Suppose that $e, f \in \mathbf{Z}$ and that $\operatorname{gcd}(e, f)=1$. TRUE OR FALSE: There exist integers u and v such that $u e^{4}+v f^{4}=-1$. Justify your answer carefully.

Solution: The statement is true. We will use divisibility proposition 14. We first want to point out that the assumption that $m \geq 1$ in that proposition is not needed. In fact, If $a, b \in \mathbf{Z}$, and not both are zero, then $g d c(a, b)$ is defined and is unchanged if one multiplies a and/or b by -1 . This is so because the divisors of a and $-a$ are the same. The divisors of b and $-b$ are the same too. Thus, the set of common divisors of a and b is unchanged if one replaces a by $-a$ or b by $-b$.

Since $\operatorname{gcd}(e, f)=1$, divisibility proposition 14 implies that $g c d(e \cdot e \cdot e \cdot e, f)=1$. That is, $\operatorname{gcd}\left(e^{4}, f\right)=1$. Thus, $\operatorname{gcd}\left(f, e^{4}\right)=1$. Using proposition 14 again (with $m=e^{4}$), it follows that $\operatorname{gcd}\left(f \cdot f \cdot f \cdot f, e^{4}\right)=1$. That is, $\operatorname{gcd}\left(f^{4}, e^{4}\right)=1$. We have therefore shown that $\operatorname{gcd}\left(e^{4}, f^{4}\right)=1$. By divisibility proposition 4 , it follows that there exist integers m and n such that $m e^{4}+n f^{4}=1$. Letting $u=-m$ and $v=-n$, we then have $u e^{4}+v f^{4}=-1$ for that choice of integers u and v.

QUESTION 4. (20 points) Let $n=5^{50}+13^{17}+3^{15}$. Prove that $65 \mid n$.
(Note that $65=5 \cdot 13$.)
Solution: First of all, note that $5 \mid 5^{50}$ and hence $5^{50} \equiv 0(\bmod 5)$. Secondly, notice that $13 \equiv 3(\bmod 5)$ and hence $13^{17} \equiv 3^{17}(\bmod 5)$. We have used Congruence Property 6 . We use that property later too. We have

$$
13^{17}+3^{15} \equiv 3^{17}+3^{15} \equiv 3^{15}\left(3^{2}+1\right) \equiv 3^{15} \cdot 10 \equiv 3^{15} \cdot 0 \equiv 0(\bmod 5)
$$

We have used the fact that $10 \equiv 0(\bmod 5)$. It follows that

$$
n=5^{50}+\left(13^{17}+3^{15}\right) \equiv 0+0 \equiv 0 \quad(\bmod 5)
$$

Now notice that $13 \mid 13^{17}$ and hence $13^{17} \equiv 0(\bmod 13)$. Also, notice that

$$
5^{2}=25 \equiv-1 \quad(\bmod 13)
$$

Therefore,

$$
5^{50}=\left(5^{2}\right)^{25} \equiv(-1)^{25} \equiv-1 \quad(\bmod 13)
$$

Furthermore, notice that $3^{3}=27 \equiv 1(\bmod 13)$. Therefore,

$$
3^{15}=\left(3^{3}\right)^{5} \equiv 1^{5} \equiv 1 \quad(\bmod 13)
$$

It follows that

$$
n=5^{50}+13^{17}+3^{15} \equiv-1+0+1 \equiv 0 \quad(\bmod 13)
$$

We have shown that $n \equiv 0(\bmod 5)$ and $n \equiv 0(\bmod 13)$. Since $\operatorname{gcd}(5,13)=1$, it follows (by using Congruence Property 10) that $n \equiv 0(\bmod 5 \cdot 13)$. That is, $n \equiv 0(\bmod 65)$.

QUESTION 5. Suppose that $a \in \mathbf{Z}$ and that $a \geq-10$. Suppose also that $a \equiv 1(\bmod 7)$. Carefully prove that $a+20$ cannot be a prime.

Solution: \quad Since $a \equiv 1(\bmod 7)$ and $20 \equiv 20(\bmod 7)$, it follows that

$$
a+20 \equiv 1+20 \quad(\bmod 7)
$$

Now $1+20=21 \equiv 0(\bmod 7)$. Thus, we have $a+20 \equiv 0(\bmod 7)$. It follows that $a+20$ is divisible by 7 .

Furthermore, since $a \geq-10$, we have $a+20 \geq 10$. Therefore, $a+20>7$. In summary, we know $a+20=7 q$, where $q \in \mathbf{Z}$, and that $1<7<a+20$. It is clear that q is a positive integer since $a+20$ is positive. Since $7<a+20$, it is clear that $q \neq 1$. Therefore $a+20=7 q$ is a product of two positive integers 7 and q and neither factor is equal to 1 . Hence, $a+20$ cannot be a prime.

