Isomórphisms, automorphisms, and embeddings of fields.

Suppose that F and K are subfields of \mathbb{C} and that K is a finite extension of F. As defined in class, a map $\sigma: K \to \mathbb{C}$ is called an "embedding of K into \mathbb{C} over F" if σ is an injective ring homomorphism and $\sigma(a) = a$ for all $a \in F$. If $Im(\sigma) = K$, then we can regard σ as an isomorphism of K to itself. Still assuming that $\sigma(a) = a$ for all $a \in F$, we will then say that σ is an "automorphism of K over F".

The set of embeddings of K into \mathbb{C} over F will be denoted by $Emb_F(K, \mathbb{C})$. The set of automorphisms of K over F will be denoted by Aut(K/F).

Propositions. We will make the assumptions that K/F is a finite extension and that the fields F and K are subfields of \mathbb{C} .

- 1. If $\sigma \in Emb_F(K, \mathbf{C})$, then $Im(\sigma)$ is a subfield of \mathbf{C} containing F and is isomorphic to K. Furthermore, if $\alpha \in K$, $f(x) \in F[x]$, and α is a root of f(x), then $\sigma(\alpha)$ is also a root of f(x).
- 2. Suppose that $K = F(\alpha_1, \ldots, \alpha_t)$. Let $A = \{\alpha_1, \ldots, \alpha_t\}$. Suppose that $\sigma \in Emb_F(K, \mathbb{C})$. Then σ is completely determined by the restriction $\sigma|_A$.
- **3.** The cardinality of $Emb_F(K, \mathbb{C})$ is equal to [K : F].
- 4. Suppose that $K = F(\theta)$. Let m(x) denote the minimal polynomial for θ over F. The cardinality of Aut(K/F) is equal to the number of complex roots of m(x) which are in K.
- 5. Suppose that $f(x) \in F[x]$ and that K is the splitting field for f(x) over F. Suppose that $\sigma \in Emb_F(K, \mathbb{C})$. Then $Im(\sigma) = K$. Furthermore, we have |Aut(K/F)| = [K:F].
- 6. Suppose that $f(x) \in F[x]$ and that K is the splitting field for f(x) over F. Let $\theta_1, \ldots, \theta_n$ denote the distinct complex roots of f(x). Let $B = \{\theta_1, \ldots, \theta_n\}$. Then the restriction $\sigma|_B$ is a bijection of the set B to itself.
- 7. Suppose that $f(x) \in F[x]$ and that K is the splitting field for f(x) over F. Assume that f(x) has n distinct roots in \mathbb{C} . Let $\theta_1, \ldots, \theta_n$ denote these roots. Let $B = \{\theta_1, \ldots, \theta_n\}$. Define a map

$$\rho: Aut(K/F) \longrightarrow S_B$$

by $\rho(\sigma) = \sigma|_B$ for all $\sigma \in Aut(K/F)$. Then ρ is an injective group homomorphism from Aut(K/F) to S_B . The image of ρ is a subgroup of S_B whose order is equal to [K:F].

8. We have |Aut(K/F)| = [K : F] if and only if K is the splitting field over F for some polynomial $f(x) \in F[x]$.