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1 Introduction

Suppose that E is an elliptic curve defined over Q. Consider the homomorphism

ρE,p : GQ −→ AutZp

(
Tp(E)

)

giving the action of GQ on Tp(E), the p-adic Tate module for E and for a prime p. If E
doesn’t have complex multiplication, then a famous theorem of Serre [Ser2] asserts that the
image of ρE,p has finite index in AutZp

(
Tp(E)

)
for all p and that the index is 1 for all but

finitely many p. This paper concerns some of the exceptional cases where the index is not
1. If E has a cyclic isogeny of degree p defined over Q, then Tp(E)/pTp(E) is isomorphic to
E[p] and has a 1-dimensional Fp-subspace which is invariant under the action of GQ. Hence
ρE,p can’t be surjective if such an isogeny exists. Our primary objective in this paper is to
show that, under various assumptions, the image of ρE,p is as large as allowed by the p-power
isogenies defined over Q.

Assume that E has a Q-isogeny of degree p and let Φ denote its kernel. Let Ψ = E[p]
/
Φ.

The actions of GQ on Φ and Ψ are given by two characters ϕ, ψ : GQ → F×
p , respectively.

Our main result is the following.

Theorem 1. Assume that p ≥ 7. Assume also that ϕψ−1 is not of order 2. Then the image
of ρE,p contains a Sylow pro-p subgroup of AutZp

(
Tp(E)

)
.

One can identify AutZp

(
Tp(E)

)
with GL2(Zp) by choosing a basis for Tp(E) over Zp. One

Sylow pro-p subgroup of GL2(Zp) is the set of matrices whose reduction modulo p is upper
triangular and unipotent, which we will denote by S2(Zp) in this paper. The conclusion in

†Research supported in part by National Science Foundation grant DMS-0200785.

1



the proposition is that, for some choice of basis, the image of ρE,p contains S2(Zp). One can
then determine the image of ρE,p precisely. It is determined by the two characters ϕ and ψ.

It is worth pointing out that the validity of the assumptions or the conclusion in the above
proposition is unaffected by quadratic twists, and so depends only on the j-invariant of the
elliptic curve E. (Note that elliptic curves with automorphisms of order 3 or 4 are excluded
since p > 3.) If E is replaced by the quadratic twist Ed for some squarefree integer d, then
the characters ϕ and ψ themselves are changed to ϕχ and ψχ, where χ is the character
corresponding to the quadratic field Q(

√
d).

IfK = Q(
√−p) has class number 1 and E is an elliptic curve overQ whose endomorphism

ring R is an order in K, then E has an isogeny of degree p over Q. For p ≥ 5, this is so
because it turns out that

√−p ∈ R and so E has an endomorphism defined over K of degree
p whose kernel is GQ-invariant. This endomorphism corresponds to a Q-isogeny from E
to the quadratic twist E−p. One sees easily that the ratio ϕψ−1 is the quadratic character
corresponding to K. Thus, ϕψ−1 has order 2. The image of ρE,p is a two-dimensional p-adic
Lie group and hence cannot even be open in AutZp

(
Tp(E)

)
.

A famous theorem of Mazur [Maz] asserts that non-CM elliptic curves over Q which have
a Q-isogeny of prime degree p exist only for p in the set {2, 3, 5, 7, 11, 13, 17, 37}. For such
elliptic curves, it turns out that the order of ϕψ−1 is at least 4 if p ≥ 11 or if p = 5, as
explained in remark 4.2.1. Something rather special happens for p = 7. There are non-CM
elliptic curves over Q with a Q-isogeny of degree 7 where ϕψ−1 has order 2. For example, the
curves in the isogeny classes 637A and 637C have those properties. The set of j-invariants
corresponding to such elliptic curves turns out to be infinite. In [GRSS], Rubin, Silverberg,
Stoll, and the author prove that the conclusion in theorem 1 is still true for all but two of
those j-invariants. The exceptions are CM-elliptic curves. Up to quadratic twists, they are
represented by the elliptic curves of conductor 49. There are four such elliptic curves. They
have complex multiplication by either the maximal order of Q(

√
−7) or the order Z[

√
−7],

and correspond to the two exceptional j-invariants. A key ingredient in the argument is to
use the method of Chabauty for a certain curve of genus 12.

The assumption in theorem 1 that p ≥ 7 is needed. The conclusion can certainly fail
to be true if p = 5, even though the ratio ϕψ−1 must then have order 4. (See remark
4.2.1.) For example, if E is defined by y2 + y = x3 − x2 − 10x − 20, which is 11A1 in
[Cre], then E[5] is isomorphic to Φ⊕Ψ, a direct sum of two 1-dimensional F5-representation
spaces for GQ. Thus, E has two independent isogenies of degree 5 over Q. Obviously, the
image of ρE,5 cannot contain S2(Z5) in that case. The index of the image will clearly be
divisible by 5. Fisher [Fis] shows that the image of ρE,5 contains the kernel of the map
AutZ5

(
T5(E)

)
→ AutF5

(E[5]). The same thing is actually true for any elliptic curve over Q
with two independent Q-isogenies of degree 5, a consequence of the last part of the following

2



result.

Theorem 2. Suppose that E has an isogeny of degree 5 defined over Q. If none of the
elliptic curves in the Q-isogeny class of E has two independent isogenies of degree 5, then
the image of ρE,5 contains a Sylow pro-5 subgroup of AutZ5

(
T5(E)

)
. Otherwise, the index of

the image of ρE,5 in AutZ5

(
T5(E)

)
is divisible by 5, but not by 25.

Thus, the power of 5 dividing the index [AutZ5

(
T5(E)

)
: im(ρE,5)] is either 1 or 5. In general,

as we explain in section 2, if E is any non-CM elliptic curve and p is any prime, then the
index [AutZp

(
Tp(E)

)
: im(ρE,p)] depends only on the isogeny class of E over Q. This fact is

a special case of a very general observation. Apart from the cases considered in theorems 1
and 2, and restricting attention to elliptic curves with a Q-isogeny of degree p, we have not
been able to determine all the possibilities for that index. It is just the power of p which
leads to serious difficulties, and the issue remains unresolved only for the primes p ∈ {2, 3, 7}.

As we mentioned above, the case p = 7 will be studied in [GRSS]. However, for p ∈ {2, 3},
many of the ingredients in the proofs break down. Obviously, ϕψ−1 will be of order 1 or 2.
Furthermore, it is possible for elliptic curves over Q to have cyclic Q-isogenies of 2-power
degree up to 16, which is one of the numerous difficulties for p = 2. As for p = 3, one can
prove some sufficient conditions for the conclusion in theorem 1 to hold, but certain cases will
not be covered. One natural question is the following: Is the index [AutZp

(
Tp(E)

)
: im(ρE,p)]

bounded when E varies over some class of non-CM elliptic curves? We wonder if this question
is approachable when p = 2 and E is allowed to vary over all non-CM elliptic curves defined
over Q.

Theorem 1 was originally motivated by a project concerning non-commutative Iwasawa
theory. It was of interest to construct p-adic Lie extensions whose Galois group is isomorphic
to a specific subgroup H∞ of PGL2(Zp), namely the subgroup represented by matrices which
are upper triangular modulo p. Elliptic curves with an isogeny of degree p provide a possible
source of such examples and the above proposition confirms this for p ∈ {7, 11, 13, 17, 37}.
All one needs is for ϕψ−1 to have order p − 1, and this can happen for each of the listed
primes, as we explain in remark 4.2.1. The p-adic representations associated to modular
forms give other examples for certain primes p. Results in [Gre] provide another source of
such examples for many more primes.

The proof of theorem 1 actually also proves the first part of theorem 2. However, the
proof of the second part of theorem 2 remained elusive for some time. I suspected at first that
the index would sometimes be divisible by 25. Alice Silverberg and Karl Rubin provided me
with a parametric description of the family of elliptic curves over Q with two independent
Q-isogenies of degree 5. Attempts to use that description to find such examples failed. In the
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end, very helpful discussions with Silverberg and Rubin at UC Irvine led to completing the
proof. Two crucial ingredients are due to them, namely that all the elliptic curves E in the
above family are potentially ordinary at 5 and that this could force some prime ℓ 6= 5 to have
ramification index divisible by 5 in a certain cyclic extension of Q contained in Q(E[25]).
I am grateful for the invitation to visit UC Irvine and for the long and fruitful discussions
about this topic that took place there.

A number of computations were useful as a guide. I am grateful to Robert Bradshaw for
showing me how to use Sage for some of those computations. I also want to thank William
Stein and Soroosh Yazdani for finding an elliptic curve with a Q-isogeny of degree 13 where
the ratio ϕψ−1 turns out to have order 4. That example settles the only unresolved question
concerning the possible orders of that ratio, as explained in remark 4.2.1.

Section 2 of this paper contains a proof of the fact that the index of the image of ρE,p
is an isogeny invariant. Various other useful isogeny invariants are also discussed. Section
3 contains the group theoretic ingredients that we need, mainly observations concerning the
structure of certain pro-p subgroups of GL2(Zp). Theorems 1 and 2 are proved in sections
4 and 5, respectively. We prove more general versions for elliptic curves over a number field
F , but special considerations when F = Q, and when p = 5 in the case of theorem 2, are
needed.

An earlier version of this paper contained a discussion of the p-adic representation ρ∆,p
associated to the cusp form ∆ of weight 12 and level 1 for the two primes p = 691 and
p = 7. If T is a GQ-invariant Zp-lattice in the underlying representation space for ρ∆,p, then
it turns out that T/pT is reducible for those primes, corresponding to the existence of certain
classical congruences for Ramanujan’s τ -function. (This connection is discussed in [Ser1].)
The point of view of this paper shows that the conclusion in theorem 1 holds for ρ∆,691. The
case p = 7 is more interesting. We are able to determine the image of ρ∆,7 modulo 72, which
turns out to be a subgroup of GL2(Z/7

2Z) of order 6 · 73. Consequently, we can derive a
certain classical congruence for τ(q) modulo 72, where q is any prime. This congruence is
given as (8.6) in [BeOn]. The discussion we had originally included sheds light on the nature
of that congruence and why it exists. However, we then found that these things have already
been discussed by Swinnerton-Dyer in [SwD]. His result concerning the image of ρ∆,7 even
gives a congruence for τ(q) modulo 73, a refinement of the congruence modulo 72. Our point
of view is rather different than the one in [SwD] and should hopefully also be able to explain
that refinement. We hope to pursue this interesting example at another time.
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2 Isogeny invariants.

Suppose that F is a number field and that E is an elliptic curve defined over F . We collect
here a number of quantities defined in terms of E, but which turn out to depend only on the
F -isogeny class of E. The first was already mentioned in the introduction, but we consider
it in a very general form.

2.1. The index of the image. As mentioned in the introduction, if E is a non-CM elliptic
curve over Q, p is any prime, and E ′ is isogenous to E over Q, then the images of ρE,p
and ρE′,p in GL2(Zp) (after choosing bases for their respective Tate modules) have the same
index. The analogous fact is true over any number field and follows from the following
general result. Let F be a finite extension of Qp and let O be the maximal order in F .

Proposition 2.1.1. Suppose that V is a finite-dimensional F-vector space and that G is a
compact, open subgroup of AutF(V ). If T and T ′ are any two G-invariant O-lattices in V ,
then [AutO(T ) : G] = [AutO(T

′) : G].

Proof. If one chooses a basis for V over F , then AutF(V ) is identified with GLn(F), where
n = dimF(V ). Thus, we can regard AutF(V ) as a locally compact topological group. We can
choose a left Haar measure µ on AutF(V ) such that µ(G) = 1. Both AutO(T ) and AutO(T

′)
can be regarded as subgroups of AutF(V ). They are compact, open subgroups and contain
G as a subgroup of finite index. Furthermore, if σ ∈ AutF(V ) and T is any O-lattice in V ,
then so is σ(T ). Thus, we have an action of AutF(V ) on the set of O-lattices in V . This
action is easily seen to be transitive. Also, the stabilizer of T for this action is just AutO(T ).
Choosing σ so that σ(T ) = T ′, we have AutO(T

′) = σAutO(T )σ
−1. We want to show that

both of those open sets have the same measure with respect to µ.
It suffices to show that µ is a right Haar measure too. If σ ∈ AutF(V ) and if U is any

open subset of AutF(V ), then we define the measure µσ by µσ(U) = µ(Uσ−1). Clearly,
µσ is a left Haar measure on AutF(V ) and so we have µσ = c(σ)µ for some positive real
constant c(σ). The map c is a homomorphism from AutF(V ) to the multiplicative group
R×
pos. It is trivial on the center of AutF(V ) and hence factors through the corresponding

quotient group, which is isomorphic to PGLn(F). However, PGLn(F) contains the simple,
nonabelian group PSLn(F) as a normal subgroup of finite index. Hence c factors through
a finite quotient group of AutF(V ). Since R×

pos is torsion-free, c must be trivial. Therefore,
it follows that µ is also right translation-invariant, i.e., µ is indeed a right Haar measure on
AutF(V ). As a consequence, we have

µ
(
AutO(T )

)
= µ

(
AutO(T

′)
)

.
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Every coset of G in AutO(V ) has measure 1 with respect to µ and hence each of the above
quantities is just the respective index in the proposition. �

The assertion about elliptic curves follows by taking F = Qp and V = Tp(E) ⊗Zp
Qp,

which we denote by Vp(E). Suppose that E is defined over a number field F and is non-CM.
Then GF acts on Vp(E). Let G denote the image of GF in AutQp

(
Vp(E)

)
. Thus, G is a

compact subgroup of AutQp

(
Vp(E)

)
. According to a theorem of Serre [Ser2], G is open. If

E ′ is F -isogenous to E, then its Tate module Tp(E
′) can be regarded as another G-invariant

Zp-lattice in V . For the special case where F = Q, and where E has an isogeny of degree
p over Q, it is not difficult to determine all the possibilities for the prime-to-p part of the
index. It amounts to determining the possibilities for the degrees of the extension K/Q,
where K = Q(Φ,Ψ), the fixed field for ker(ϕ) ∩ ker(ψ). Since Q(µp) ⊆ K, the degree in
question is of the form k(p− 1), where k divides p− 1. The prime-to-p part of the index is
then (p2 − 1)/k. It is not hard to show that k ∈ {1, 2, 3, 4, 6}. For p ≤ 7, each k dividing
p− 1 can occur.

As an illustration, consider the three elliptic curves E over Q of conductor 11, which we
denote by E1, E2, and E3 (for 11A1, 11A2, and 11A3, respectively). They have Q-isogenies
of degree 5. One has Φ ∼= µ5 and Ψ ∼= Z/5Z, or the reverse. In terms of a suitable basis
for T5(Ei), where 1 ≤ i ≤ 3, the image of ρEi,5 turns out to be the subgroup Gi of GL2(Z5),
where

G1 =

[
Z×

5 5Z5

5Z5 1 + 5Z5

]
, G2 =

[
Z×

5 Z5

52Z5 1 + 5Z5

]
, G3 =

[
1 + 5Z5 Z5

52Z5 Z×
5

]
.

All of these subgroups have index 120 in GL2(Z5). The assertion that im(ρE1,5) = G1 is
verified by Fisher in [Fis]. The fact that G1 contains im(ρE1,5) is clear because E1[5] ∼= Φ⊕Ψ.
The equality then means that [AutZ5

(
T5(E1)

)
: im(ρE1,5)] = 120. Now E2 and E3 both have

just one independent Q-isogeny of degree 5, whose kernel Φ is isomorphic to µ5 for E2 and
to Z/5Z for E3. In addition, both have cyclic Q-isogenies of degree 25. Thus, for i ∈ {2, 3},
it is clear that Gi at least contains the image of ρEi,5. Equality then follows because Gi and
im(ρEi,5) both have the same index in GL2(Z5).

2.2. A more general version. Suppose that f is a cuspidal eigenform for Γ0(N) of weight
k and some level N ≥ 1. Consider the two-dimensional π-adic representation associated to
f which was constructed by Deligne. Here π is a prime above p of the field generated by
the Hecke eigenvalues of f . The representation is defined over the π-adic completion of that
field, which we denote by F . The determinant of that representation is then χk−1

p , where χp
is the p-power cyclotomic character, and has values in Q×

p . Therefore, if F 6= Qp, then the
image of the representation cannot be open. However, the image will be open in a certain
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subgroup, as was proved by Serre. One can easily generalize proposition 2.1.1 to cover such
cases.

Suppose that m ≥ 0. If V is as in proposition 2.1.1, and T is an O-lattice in V , we define

Aut∗F(V ) =
{
σ ∈ AutF(V )

∣∣ det(σ) ∈
(
Q×
p

)m }
, Aut∗O(T ) = Aut∗F(V ) ∩ AutO(T ) .

The special case m = 0 will be of interest later. In that case, Aut∗F(V ) is isomorphic to
SLn(F) and Aut∗O(T ) is isomorphic to SLn(O), where n = dimF(V ). In general, note that
if σ ∈ AutO(T ), then σ ∈ Aut∗O(T ) if and only if det(σ) ∈

(
Z×
p

)m
. Assume that G is a

compact, open subgroup of Aut∗F(V ). Let T and T ′ be G-invariant O-lattices in V . Thus,
Aut∗O(T ) and Aut∗O(T

′) contain G as a subgroup of finite index. We will show that the
corresponding indices are the same.

Let µ∗ be a left Haar measure on Aut∗F(V ). We can assume that µ∗(G) = 1. It is useful
to note that Aut∗F(V ) is a normal subgroup of AutF(V ). If σ ∈ AutF(V ), then we define µ∗

σ

by µ∗
σ(U) = µ∗(σUσ−1) for every open subset U of Aut∗F(V ). One sees easily that µ∗

σ is also
a left Haar measure on Aut∗F(V ) and therefore one has µ∗

σ = c(σ)µ∗ for some positive real
constant c(σ). As previously, c defines a homomorphism from AutF(V ) to R×

pos, and must
be trivial. Hence, µ∗

σ = µ∗. Also, it is clear that if T ′ = σ(T ), then

Aut∗O(T
′) = σAut∗O(T )σ

−1 .

Since µ∗
σ = µ∗, those two sets have the same measure with respect to µ∗. As before, those

measures coincide with the indices [Aut∗O(T
′) : G] and [Aut∗O(T ) : G], respectively, which

must therefore indeed be equal.

Consider the case where m = 0. Suppose we are in the situation of proposition 2.1.1.
Then G is an open subgroup of AutF(V ). Let Aut

(0)
F (V ) denote the kernel of the determinant

map det : AutF(V ) → F×. We also write Aut
(0)
O (T ) when T is an O-lattice in V for the

kernel of det on AutO(T ). Let G(0) = G ∩ Aut
(0)
F (V ), the kernel of det|G. Then G(0) is an

open subgroup of Aut
(0)
F (V ). The above result shows that if T and T ′ are two G-invariant

O-lattices in V , then [Aut
(0)
Zp
(T ) : G(0)] = [Aut

(0)
Zp
(T ′) : G(0)].

2.3. An index formula. In the rest of this section, we just consider the p-adic Tate module
for elliptic curves. We assume that E is an elliptic curve defined over a number field F and
that p is any prime. As before, we let G be the image of GF in AutQp

(
Vp(E)

)
. Of course,

one simple invariant of the F -isogeny class for E is the isomorphism class of the group
G. This is obvious because G ∼= Gal

(
F (E[p∞])/F

)
, and the field F (E[p∞]) is unchanged

by an F -isogeny. Now assume that E is non-CM. Serre’s theorem [Ser2] implies that G

is an open subgroup of AutZp

(
Tp(E)

)
. Define G(0) and Aut

(0)
Zp

(
Tp(E)

)
as in section 2.2.
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Thus, Aut
(0)
Zp

(
Tp(E)

)
is isomorphic to SL2(Zp). Recalling that det ◦ ρE,p is just the p-power

cyclotomic character χp : GF → Z×
p giving the action of GF on µp∞ , we see that det(G), the

image of G under the determinant map, is just χp(GF ). It follows that

(1) [AutZp

(
Tp(E)

)
: G] = [Aut

(0)
Zp

(
Tp(E)

)
: G(0)][Z×

p : χp(GF )] .

To see this, let A = AutZp

(
Tp(E)

)
and A(0) = Aut

(0)
Zp

(
Tp(E)

)
. Let B ⊆ A be the inverse

image of det(G) under the map det : A→ Z×
p . Then one has B = A(0)G and one sees easily

that the obvious map A(0)
/
G(0) → B/G of left coset spaces is a bijection. Also, it is obvious

that [A : B] = [Z×
p : χp(GF )]. The index relation (1) follows immediately. As a consequence,

we see again that the index [Aut
(0)
Zp

(
Tp(E)

)
: G(0)] depends only on the F -isogeny class of E.

2.4. The center of the image. With the same assumptions and notation as in 2.3, we
now consider the index of the center of G in the center of AutZp

(
Tp(E)

)
. We continue to

assume that E is non-CM. The center of AutQp

(
Vp(E)

)
is Q×

p I, where I is the identity map
on Vp(E). Since G is open, the center of G is G ∩ Q×

p I. On the other hand, if E ′ is any

elliptic curve which is F -isogenous to E, then the center of AutZp

(
Tp(E

′)
)
is simply Z×

p I

and doesn’t depend on E ′. Thus, neither does the index of G∩
(
Q×
p I

)
= G∩

(
Z×
p I

)
in Z×

p I.

The prime-to-p part of the index [Z×
p I : G∩

(
Z×
p I

)
] is determined by the action of GF on

E[p]. It is equal to the index [F×
p I : G ∩ F×

p I], where G is the image of GF in AutFp
(E[p]).

To justify this, first note that the kernel of the map G ∩ Z×
p I → G ∩ F×

p I is a pro-p group.
It therefore suffices to show the surjectivity of that map. We can assume that p is odd. To
verify the surjectivity, note that the map G→ G (which is reduction modulo p) is surjective.
Now suppose that g ∈ G is such that its image g in G is in F×

p I. Then g = a(I + pA) for
some a ∈ Z×

p and some endomorphism A of Tp(E). Clearly, g
pn → bI as n → ∞, where b is

the (p− 1)-st root of unity in a+ pZp. Thus, bI ∈ G ∩ Z×
p I is also mapped to g.

If E has an F -isogeny of degree p, then [F×
p I : G ∩ F×

p I] is determined by ϕ and ψ. To

see this, note that G consists of upper triangular matrices (in terms of a suitable basis for
E[p]). Also, if G contains an element of the form au, where a ∈ F×

p and u is upper triangular

and unipotent, then G contains (au)p = aI. It follows that G∩F×
p I consists of elements aI,

where a = ϕ(σ) = ψ(σ) for some σ ∈ GF . That is, a = ϕ(σ), where σ ∈ ker(ϕψ−1). Thus,
G ∩ F×

p I is isomorphic to ϕ
(
ker(ϕψ−1)

)
. For example, if E(F ) has a point of order p, then

one can take ϕ to be trivial and we have [F×
p I : G ∩ F×

p I] = p− 1.

2.5. The set of Galois-invariant cyclic subgroups. Suppose that E is a non-CM elliptic
curve defined over F . Another invariant of the F -isogeny class of E is the cardinality of the
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set of GF -invariant cyclic subgroups of E[p∞]. We denote that set by CE,p(F ). To explain
the F -isogeny invariance of |CE,p(F )|, first note that if Θ is in that set, then there exist an
elliptic curve E ′ defined over F and an F -isogeny f : E → E ′ whose kernel is Θ. The degree
of the isogeny is |Θ|, a power of p. Of course, Θ determines the F -isomorphism class of
E ′ = E/Θ. A standard type of argument shows that, conversely, the F -isomorphism class
of E ′ determines Θ. We present this next.

Let f ′ : E ′ → E denote the dual isogeny to f . Let ι : E → E be the identity map. Let
pt = |Θ|. The endomorphism of E defined by multiplication by pt is ptι. Thus, f ′ ◦ f = ptι.
Suppose that g : E → E ′ is another F -isogeny with a cyclic kernel of p-power order. Then,
f ′ ◦ g is an endomorphism of E of p-power degree. Hence, f ′ ◦ g = ±puι for some u ≥ 0.
Assume that u ≥ t. Then f ′ ◦ (f ◦ pu−tι) = ±f ′ ◦ g. This implies that f ◦ pu−tι = ±g. Since
ker(g) is cyclic, it follows that u = t and that f = ±g. Therefore, ker(g) = Θ. A similar
argument works if t ≤ u, using the assumption that ker(f) is cyclic.

We say that two elliptic curves E and E ′ defined over F are (F, p)-isogenous if there exists
an isogeny E → E ′ defined over F whose degree is a power of p. This defines an equivalence
relation. The F -isogeny class for E is partitioned into (F, p)-isogeny classes, all of the same
cardinality as one easily sees. Also, it is easy to verify that if E and E ′ are (F, p)-isogenous,
then there exists an isogeny f : E → E ′ with cyclic kernel. It follows from these observations
that there is a 1-1 correspondence between the set CE,p(F ) and the (F, p)-isogeny class of E.
Therefore, the cardinality of CE,p(F ) indeed depends only on the F -isogeny class of E.

The orders of the groups that occur in CE,p(F ) may depend on E itself. Suppose that the
largest order of a group in CE′,p(F ), as E

′ varies over the F -isogeny class of E, is pe. That is,
at least one elliptic curve F -isogenous to E has a cyclic GF -invariant subgroup Θ of order
pe, but none of those curves have a cyclic GF -invariant subgroup of order pe+1. Obviously, e
is determined just by the F -isogeny class of E. Since Θ will have e + 1 distinct subgroups,
all GF -invariant, it follows that |CE,p(F )| ≥ e+ 1. We will prove the following result.

Proposition 2.5.1. Assume that ϕ 6= ψ. We then have |CE,p(F )| = e+ 1.

Proof. Equality is trivial if e = 0 and so we assume that e ≥ 1. Thus, E has a cyclic
F -isogeny of degree p with kernel Φ, say. Nothing is lost if we just assume that E[p∞] itself
has a cyclic GF -invariant subgroup Θ of order pe and that Θ[p] = Φ. It follows that all the
composition factors in Θ are isomorphic to Φ. The GF -module E[pe] has 2e-composition
factors, half isomorphic to Φ and half isomorphic to Ψ. It follows that all the composition
factors in E[pe]/Θ will be isomorphic to Ψ. Suppose that we have |CE,p(F )| > e + 1. Then
E[pe] would contain a cyclic GF -invariant subgroup Ξ not contained in Θ. The composition
factors for Ξ must include Ψ at least once. But they are all isomorphic to Ξ[p]. Hence
Ξ[p] ∼= Ψ and so Ξ[p] 6= Θ[p]. It follows that E[p] has two distinct GF -invariant subgroups
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of order p, Φ itself and another which we simply denote by Ψ. Since dimFp
(E[p]) = 2, we

see that E[p] ∼= Φ×Ψ as GF -modules.
Now E[pe+1]

/
E[p] is isomorphic to E[pe] and therefore contains a GF -invariant subgroup

isomorphic to Θ. Since E[p]/Ψ ∼= Φ, it follows that E[pe+1]/Ψ has a GF -invariant subgroup
Θ′ of order pe+1 whose composition factors are all isomorphic to Φ. Note that Θ′ can be
regarded as a subgroup of E ′[pe+1], where E ′ = E/Ψ. It is GF -invariant. Since E ′[p] has
a composition factor isomorphic to Ψ, it follows that Θ′[p] 6= E ′[p]. Hence Θ′ is cyclic.
Its order is pe+1. This contradicts the definition of e, showing that we do indeed have the
equality |CE,p(F )| = e+ 1. �

The assumption that ϕ 6= ψ in proposition 2.5.1 is automatically satisfied if F = Q and
p ≥ 3. More generally, for any number field F , we have ϕψ = ωF , the character giving the
action of Gal

(
F (µp)/F

)
on µp. If ϕ = ψ, then ωF = ϕ2 and this has order < p − 1 if p is

odd. In particular, if [F (µp) : F ] = p− 1 and p ≥ 3, then ϕ 6= ψ.
If ϕ = ψ, then one can have |CE,p(F )| > e + 1. As an example when F = Q, consider

p = 2 and the elliptic curves in the Q-isogeny class 15A in [Cre]. That isogeny class has
cardinality 8 and all the curves in it are related by cyclic Q-isogenies of 2-power degree.
The kernels have orders 1, 2, 4, 8, and 16. None have order 27. Of course, we still have
|CE,2(Q)| = 8. Following Cremona’s ordering, we give here the number of cyclic subgroups
of each of the orders 2, 4, 8, 16, respectively, for each of the curves in 15A. The numbers are
3, 4, 0, 0 for A1, 3, 2, 2, 0 for A2 and A3, and 1, 2, 2, 2 for the remaining five curves.

With proposition 2.5.1 in mind, we want to single out two types of behavior concerning
(F, p)-isogeny when E has a nontrivial F -isogeny of degree p. These types are determined
just by the F -isogeny class of E. We continue to assume that ϕ 6= ψ.

Type I. We just require that e = 1. That is, the (F, p)-isogeny class of E contains just one
other elliptic curve E ′. Both E and E ′ have just one independent cyclic isogeny of degree p,
and none of degree p2.

Type II. This just means that e = 2 . That is, the (F, p)-isogeny class for E contains three
elliptic curves, at least one of which has a cyclic F -isogeny of degree p2. Suppose that E1

is one such elliptic curve and that Θ1 is a cyclic, GF -invariant subgroup of E1[p
2] of order

p2. Of course, E2 = E1/Θ1 will be another such elliptic curve since the image of E1[p
2] in

E2[p
2] is GF -invariant and cyclic of order p2. Finally, E3 = E1/Θ1[p] has two independent

F -isogenies of degree p. One with kernel Θ1/Θ1[p], the other with kernel E1[p]/Θ1[p]. Those
two subgroups of E3[p] are obviously distinct. Now E3 cannot also have a cyclic isogeny
of degree p2 because |CE3,p(F )| = 3. For the same reason, E1 and E2 cannot have two
independent F -isogenies of degree p.
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If E has an F -isogeny of degree p, but none of the elliptic curves in the F -isogeny class
of E has a cyclic F -isogeny of degree p2, then that F -isogeny class is of type I. If E has
either a cyclic F -isogeny of degree p2 or two independent F -isogenies of degree p, but none
of the elliptic curves in the F -isogeny class of E has a cyclic F -isogeny of degree p3, then
that F -isogeny class is of type II.

As an illustration, if p = 5, then the Q-isogeny class 11A is of type II and the Q-
isogeny class 38B is of type I. One can see this by noting that those Q-isogeny classes are
of cardinality 3 and 2, respectively. Both of those Q-isogeny classes consist of one (Q, 5)-
isogeny class. The Q-isogeny class 66C has cardinality 4 and is a union of two (Q, 5)-isogeny
classes. It is of type I. For p ≥ 7, elliptic curves over Q can’t have cyclic Q-isogenies of
degree p2, a result due to Mazur [Maz], Ligozat [Lig], and Kenku [Ken1,2]. Thus, if E is
defined over Q and has a cyclic Q-isogeny of degree p, then the Q-isogeny class of E is of
type I.

3 Pro-p subgroups of GL2(Zp).

3.1. A Sylow pro-p subgroup. We just assume at first that p is an odd prime. Let U2(Fp)
denote the group of upper triangular, unipotent matrices in GL2(Fp), which is a cyclic
subgroup of order p. Of course, U2(Fp) is a Sylow p-subgroup of GL2(Fp). Let

S2(Zp) =

[
1 + pZp Zp
pZp 1 + pZp

]
.

Then S2(Zp) is the inverse image of U2(Fp) under the obvious map GL2(Zp) → GL2(Fp).
The kernel of that map will be denoted by C2(p). Since C2(p) is a pro-p group, it follows that

S2(Zp) is a Sylow pro-p subgroup of GL2(Zp). Furthermore, S
(0)
2 (Zp) = S2(Zp)∩ SL2(Zp) is

a Sylow pro-p subgroup of SL2(Zp). The following result will be a crucial part of proving
theorem 1.

Proposition 3.1.1. Suppose that A,B ∈ S
(0)
2 (Zp), that C ∈ S2(Zp), and that these matrices

have the following properties:

(a) The image of A in GL2(Fp) is nontrivial.

(b) The image of B in GL2(Fp) is trivial and the image of B in GL2(Z/p
2Z) is not upper

triangular.

(c) Det(C) 6≡ 1 (mod p2).
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Then {A,B} generates a dense subgroup of S(0)(Zp) and {A,B,C} generates a dense sub-
group of S2(Zp).

The conclusion gives what we call “topological generating sets” for the pro-p groups S(0)(Zp)
and S2(Zp). Note that property (a) means that the image of A in U2(Fp) generates that
group. Letting M2(Zp) denote the ring of 2 × 2 matrices over Zp, M2(Fp) denote that ring
over Fp, and I2 denote the 2 × 2 identity matrix, property (b) means that B = I2 + pX,
where X ∈M2(Zp) and the image of X in M2(Fp) is not upper triangular. Finally, property
(c) simply means that det(C) = 1 + px, where x ∈ Zp, x 6∈ pZp. If we replace C by CAu for
a suitable u, we can assume that C ∈ C2(p).

The proof is based on the following lemma. It is a special case of proposition 5.3.1 in
[Gre], which is the analogue for n× n matrices, but can also be easily verified directly when
n = 2. However, we will state it here in a more detailed form. Let M (0)(Fp) denote the
subspace ofM2(Fp) consisting of matrices of trace 0. The group U2(Fp) acts on both of these
Fp-vector spaces by conjugation. Hence, they can be regarded as modules over the group
ring Fp[U2(Fp)]. The matrix with a 1 in row i, column j, and 0’s for its other entries will be
denoted by Eij. We will use this notation for that specific matrix over various rings.

Lemma 3.1.2. Suppose that p ≥ 3. Let U2(Fp) act on M (0)(Fp) by conjugation. Then
M (0)(Fp) is a cyclic module over Fp[U2(Fp)]. The only proper Fp[U2(Fp)]-submodules of
M (0)(Fp) are FpE12 and FpE12 + Fp(E11 − E22). If m ∈ M (0)(Fp) is not upper triangular,
then m is a generator of M (0)(Fp) as an Fp[U2(Fp)]-module.

The ring Fp[U2(Fp)] is a local ring. If u is a generator for U2(Fp), then the nontrivial
ideals in Fp[U2(Fp)] are powers of the maximal ideal J , the ideal generated by u − 1. It is
the augmentation ideal of Fp[U2(Fp)]. Thus, the first assertion in the lemma implies that
M (0)(Fp) ∼= Fp[U2(Fp)]

/
J3. The proper submodules mentioned in the lemma correspond to

J2/J3 and J/J3, respectively, in that isomorphism. The second submodule has Fp-dimension
2 and is just the subspace of upper triangular matrices inM (0)(Fp). The first is 1-dimensional
and is just the subspace of “strictly” upper triangular matrices.

Proof of proposition 3.1.1. The argument is based on the above lemma and the isomorphisms
(3) below, which we state in a more general form than we now need. They concern the

Frattini quotients Π̃ of certain pro-p groups Π. (We recall the general definition of the

Frattini quotient below.) Let C2(p
k) = I2 + pkM2(Zp) for any k ≥ 1 and let C

(0)
2 (pk) denote

the intersection of C2(p
k) with SL2(Zp). Their Frattini quotients are given by

(2) C̃2(pk) = C2(p
k)
/
C2(p

k+1), C̃
(0)
2 (pk) = C

(0)
2 (pk)

/
C

(0)
2 (pk+1) .
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We then have the isomorphisms

(3) C̃2(pk) ∼= M2(Fp) , C̃
(0)
2 (pk) ∼= M

(0)
2 (Fp) ,

which are induced by the map sending I2 + pkX to the image of X in M2(Fp), where
X is in M2(Zp). This map is an isomorphism of Fp-representation spaces for GL2(Fp),

where GL2(Fp) acts on M2(Fp) by conjugation. As for the action on C̃2(pk), note first that
GL2(Z/p

k+1Z) acts on that group by conjugation. One sees easily that this action factors

through the quotient group GL2(Fp), and thus defines an action of that group on C̃2(pk).

Now B ∈ C
(0)
2 (p). Let B̃ denote its image in C̃

(0)
2 (p). Lemma 3.1.2 and the assumption

about B imply that the image of B̃ under the map (3) generates M
(0)
2 (Fp) as an Fp[U2(Fp)]-

module. It follows that the orbit of B̃ under the action of U2(Fp) generates the group

C̃
(0)
2 (p). The Burnside Basis Theorem (which is recalled below) then implies that the set

{AiBA−i}0≤i<p is a topological generating set for C
(0)
2 (p). Consequently, it indeed follows

that {A,B} is a topological generating set for S
(0)
2 (Zp). Finally, consider the determinant

map det : S2(Zp) → 1 + pZp. This map is surjective and the image of C under that map
generates 1 + pZp topologically. The final assertion in the proposition then follows. �

3.2. Ω-groups and the Ω-type. A more detailed discussion of this topic can be found in
sections 2 and 5 of [Gre]. We assume that Ω is a finite subgroup of the group of diagonal
matrices in GL2(Zp). Thus, Ω is an abelian group and its exponent divides p− 1. Suppose
that Π is a pro-p subgroup of GL2(Zp) and that αΠα−1 = Π for all α in Ω. We then have a
homomorphism Ω → Aut(Π), where Aut(Π) denotes the group of continuous automorphisms
of Π. This homomorphism is defined by letting α ∈ Ω act on Π by conjugation. Thus, in
the terminology of [Gre], Π is an Ω-group. For example, S2(Zp) and S

(0)
2 (Zp) are Ω-groups,

as are the groups C2(p
k) and C

(0)
2 (pk) for k ≥ 1. Furthermore, letting Ω acts on M2(Fp) and

M
(0)
2 (Fp) by conjugation, it is obvious that the isomorphisms (3) are Ω-equivariant.
In general, suppose that Π is a topologically finitely generated pro-p group. The Frattini

subgroup Fr(Π) of Π is the intersection of all closed subgroups of Π of index p. The Frattini

quotient of Π is the quotient group Π
/
Fr(Π), which we denote by Π̃. It is a finite-dimensional

Fp-vector space. According to the Burnside Basis Theorem, a set of elements Σ = {π1, ..., πt}
in Π is a topological generating set for Π (i.e., the subgroup generated by Σ is dense in Π) if

and only if the set Σ̃ = {π̃1, ..., π̃t} is a generating set for Π̃. Here we denote the image of an

element π ∈ Π under the map Π → Π̃ by π̃. Thus, the minimal cardinality of a topological
generating set for Π is dimFp

(
Π̃
)
.
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Suppose that we have a homomorphism Ω → Aut(Π), where Aut(Π) denotes the group
of continuous automorphisms of Π. We then say that Π is an Ω-group. The Frattini quotient
Π̃ is then a representation space for Ω over Fp. Since Ω is abelian and has exponent dividing

p − 1, Π̃ is isomorphic to a direct sum of 1-dimensional representation spaces of Ω. Each
such summand corresponds to an F×

p -valued character ξ of Ω and occurs as a constituent in

Π̃ with a certain multiplicity mξ(Π̃). That multiplicity is the Fp-dimension of the maximal

subspace Π̃(ξ) of Π̃ on which Ω acts by the character ξ. Let Ω̂ = Hom
(
Ω,F×

p

)
, the group of

F×
p -valued characters of Ω. The isomorphism class of Π̃ as a representation space for Ω is

determined by the multiplicities
(
mξ(Π̃)

)
ξ∈Ω̂

, which we will refer to as the Ω-type of Π.

We can identify Ω̂ with Hom
(
Ω,Z×

p

)
. Suppose that Π is an Ω-group, π ∈ Π, ξ ∈ Ω̂, and

α ∈ Ω. It makes sense to write πξ(α), which is an element in the closure 〈π〉 of the cyclic
subgroup of Π generated by π. We say that π is a ξ-element if α(π) = πξ(α) for all α ∈ Ω. We
also say that such an element π is an Ω-element if we don’t specify ξ. That just means that
the subgroup 〈π〉 is Ω-invariant. The first part of the following lemma is proposition 2.1.1
in [Gre]. The second part then follows from the Burnside Basis Theorem. Essentially the
same result is also proven in [Bos]. (See page 184.) This lemma will be useful in verifying
the hypotheses in proposition 3.1.1.

Lemma 3.2.1. If x ∈ Π̃ is a ξ-element, then there exists a ξ-element π ∈ Π such that
π̃ = x. In particular, Π has a minimal topological generating set consisting of Ω-elements.

Now we consider certain special elements in GL2(Zp). We also use the notation Eij for
the matrices defined just as before, but with entries in Zp. Let D2(Zp) denote the subgroup
of diagonal matrices in in GL2(Zp). If d = d1E11 + d2E22 is in D2(Zp), if a ∈ Zp, and if
1 ≤ i, j ≤ 2, then

(4) d(I2 + aEij)d
−1 = I2 + did

−1
j aEij = (I2 + aEij)

did
-1

j .

These identities are trivial if i = j and easily verified for i 6= j. In the latter case, the third
expression is defined because the closure of the subgroup generated by I2 + aEij is a pro-p
group. Note also that if b ∈ Zp, then I2 + baEij = (I2 + aEij)

b when i 6= j. One verifies this
first for b ∈ Z, and then for b ∈ Zp using a continuity argument.

Now any α ∈ Ω can be written as α = ϕ(α)E11 + ψ(α)E22, and we have thus defined

two elements ϕ and ψ in Ω̂. With this notation, α is the diagonal matrix whose diagonal
entries are ϕ(α), ψ(α), in order. Now if we take Π = S(0)(Zp), then the set {A,B}, where
A = I2 + E12 and B = I2 + pE21, is a topological generating set consisting of Ω-elements.
Those two elements do indeed generate Π topologically, as follows from proposition 3.1.1.
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It is clear from (4) that A and B are Ω-elements and that the corresponding characters are
ϕψ−1 and its inverse ψϕ−1, respectively. The Ω-type of S(0)(Zp) is thus determined. As for

Π = S2(Zp), that group is the direct product S
(0)
2 (Zp)×(1+pZp)I2, the corresponding Frattini

quotient has Fp-dimension 3, and the set {I2 + E12, I2 + pE21, (1 + p)I2} will topologically
generate S2(Zp). The last generator is fixed by Ω and so is a ξ0-element, where ξ0 denotes
the trivial character of Ω. Thus, the Ω-type of S2(Zp) is given by the characters ϕψ−1, ψϕ−1,
and ξ0. Of course, in general, these characters are not necessarily distinct.

3.3. Other pro-p subgroups of GL2(Zp). Finally, we will list and discuss various other pro-
p groups which occur later in this paper. All of them are invariant under conjugation by
D2(Zp) and hence are Ω-groups.

For any k ≥ 1, define T2(p
k) =

[
1 + pZp Zp
pkZp 1 + pZp

]
. Thus, T2(p

k) is the subgroup of

S2(Zp) consisting of matrices which are upper triangular modulo pk. We let T
(0)
2 (pk) denote

its intersection with SL2(Zp). Obviously, T2(p) = S2(Zp). The case where k = 2 will be
especially useful. Note that T2(p

2) is a subgroup of S2(Zp) of index p and hence is a normal
subgroup. There is an action of Ω on the quotient group S2(Zp)/T2(p

2). That group is
cyclic and is generated by the image of I2 + pE21, and so Ω acts by the character ψϕ−1 on
it. Of course, the same statements obviously apply to the quotient group S

(0)
2 (Zp)/T

(0)
2 (p2).

In contrast, note that C
(0)
2 (p) is a subgroup of S

(0)
2 (Zp) of index p, the quotient group

S
(0)
2 (Zp)/C

(0)
2 (p) (which can be identified with U2(Fp)) is generated by the image of I2+E12,

and Ω therefore acts on that quotient group by the character ϕψ−1.

For any k ≥ 1, let N2(p
k) =

[
1 + pkZp Zp
pkZp 1 + pkZp

]
. We have N2(p) = T2(p) = S2(Zp).

Assume now that k ≥ 2. Then N2(p
k) is the kernel of the obvious homomorphism from

T2(p
k) to

(
(1 + pZp)

/
(1 + pkZp)

)2
(projection to the diagonal). That homomorphism is

surjective and hence N2(p
k) is a normal subgroup of T2(p

k) of index p2(k-1). In particular,
the quotient T2(p

2)/N2(p
2) is a 2-dimensional Fp-vector space on which Ω acts trivially. Let

N
(0)
2 (pk) = N2(p

k) ∩ SL2(Zp) for k ≥ 1. Then, N
(0)
2 (pk) is a normal subgroup of T

(0)
2 (pk).

The Fp-dimension of T
(0)
2 (p2)/N

(0)
2 (p2) is 1 and the action of Ω is again trivial.

Remark 3.3.1. The Frattini subgroup of S2(Zp) has the following description:

(5) Fr
(
S2(Zp)

)
= C2(p) ∩ T2(p2) ∩

(
C2(p

2)S
(0)
2 (Zp)

)
.
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To verify this, note first that the image of C2(p
2) under the determinant map is 1 + p2Zp.

Hence the third group in the intersection is the kernel of the composite map

S2(Zp) −→ 1 + pZp −→ (1 + pZp)
/
(1 + p2Zp)

and so has index p in S2(Zp), as do C2(p) and T2(p
2). We have

C2(p) ∩ T2(p2) =

[
1 + pZp pZp
p2Zp 1 + pZp

]

which has index p2 in S2(Zp). The image of C2(p) ∩ T2(p
2) under the determinant map is

1+ pZp and hence the intersection in (5) has index p3 in S2(Zp). However, proposition 3.1.1
and the Burnside Basis Theorem imply that Fr

(
S2(Zp)

)
has index at most p3, and so the

equality (5) does hold. As a consequence, one has a canonical isomorphism

S̃2(Zp) ∼= S2(Zp)
/
C2(p) × S2(Zp)

/
T2(p

2) × S2(Zp)
/(
C2(p

2)S
(0)
2 (Zp)

)

which again shows that the Ω-type of S2(Zp) is given by ξ, ξ−1, and ξ0, where ξ = ϕψ−1.

4 The proof of theorem 1.

4.1. A general result. We assume that E is an elliptic curve defined over a number field F
and that E has an isogeny of degree p defined over F , where p is an odd prime. Thus, we
have an exact sequence

(6) 0 −→ Φ −→ E[p] −→ Ψ −→ 0

of Fp-representation spaces forGF . The actions ofGF on Φ and Ψ are given by two homomor-
phisms ϕ, ψ : GF → F×

p . We can regard ϕ and ψ as F×
p -valued characters of Ω = Gal(K/F ),

where K = F (Φ,Ψ), the fixed field for ker(ϕ) ∩ ker(ψ). Thus, Ω is a finite, abelian group
of exponent dividing p− 1. Also, we have F (µp) ⊆ K and ϕψ = ω, where ω : Ω → F×

p gives
the action of Ω on µp. We can lift ϕ, ψ, and ω uniquely to Z×

p -valued characters of Ω. The
liftings will also be denoted by ϕ, ψ, and ω.

Let G = Gal
(
F (E[p∞])/F

)
. The representation ρE,p giving the action of GF on Tp(E)

induces a faithful representation of G. To simplify the discussion, we will identify G with
its image under ρE,p. It is clear that P = Gal

(
F (E[p∞])/K

)
is a normal, pro-p subgroup of

G and that G/P ∼= Ω. The Schur-Zassenhaus theorem implies that G contains a subgroup
isomorphic to Ω, unique up to conjugacy. We will fix a choice of such a subgroup, which
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we also denote by Ω. Thus, since G has been identified with a subgroup of AutZp

(
Tp(E)

)
,

so is Ω. Assume that ϕ 6= ψ. Regarding (6) as an exact sequence of representation spaces
for Ω, it splits and we have a unique splitting homomorphism. Thus, E[p] ∼= Φ ⊕ Ψ, and
the two summands are just eϕE[p] and eψE[p], where eϕ and eψ are the idempotents in
Fp[Ω] for ϕ and ψ, respectively. We also regard ϕ and ψ as Z×

p -valued characters and the
corresponding idempotents as elements of Zp[Ω]. We can then decompose Tp(E) as a direct
sum of eϕTp(E) and eψTp(E). Both those summands are free Zp-modules of rank 1. We let
vϕ and vψ be generators. Thus, {vϕ, vψ} is a Zp-module basis for Tp(E). Their images vϕ
and vψ under the canonical homomorphism Tp(E) → E[p] will be generators for eϕE[p] and
eψE[p], respectively.

We use the basis {vϕ, vψ} to identify AutZp

(
Tp(E)

)
with GL2(Zp). Thus, we now regard

G,P , and Ω as subgroups of GL2(Zp). If α ∈ Ω, then α is identified with the diagonal
matrix whose diagonal entries are ϕ(α) and ψ(α), in order, just as in section 3. We will use
the notation from that section for various other subgroups of GL2(Zp). It is clear that P
is a subgroup of S2(Zp). Letting P (0) denote the intersection of P with SL2(Zp), we have

P (0) ⊆ S
(0)
2 (Zp). Since Ω ⊂ G and P is a normal subgroup of G, the pro-p groups P and

P (0) are both invariant under conjugation by Ω and hence are Ω-groups.

Recall that we are assuming that ϕ 6= ψ. Hence, ϕψ−1 has order at least 2. We will prove
the following result.

Proposition 4.1.1. Assume that the exact sequence (6) of Fp-representation spaces for GF

is nonsplit, that E has no cyclic isogeny of degree p2 over F , and that ϕψ−1 is of order at
least 3. Then P (0) = S

(0)
2 (Zp). In addition, if we assume that [F (µp2) : F ] is divisible by p,

then P = S2(Zp).

Note that the assumption about ϕψ−1 implies that p ≥ 5. Also, the first two assumptions
are obviously necessary for the conclusions to hold.

Proof. For brevity, let ξ = ϕψ−1. Then ξ−1 = ψϕ−1 and we are assuming that ξ 6= ξ−1. The
assumption that (6) is nonsplit means that the image of P in GL2(Fp) is the cyclic group

U2(Fp). Thus, viewing P as an Ω-group, there is a surjective Ω-homomorphism P̃ → U2(Fp).
Now Ω acts on U2(Fp) by the character ξ, as pointed out in section 3.3. Hence Ω acts on

a certain quotient of P̃ by ξ. It follows that eξP̃ maps surjectively onto that quotient.

Therefore, P̃ has a nontrivial ξ-element x whose image in U2(Fp) generates that group. By

lemma 3.2.1, P itself has a ξ-element A such that Ã = x. It is clear that det(A) = 1 since if
we let Ω acts trivially on 1 + pZp, then the determinant map is an Ω-homomorphism from
S2(Zp) to 1 + pZp. Hence A ∈ P (0).
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The additional assumption that E has no cyclic Q-isogeny of degree p2 implies that
P 6⊆ T2(p

2). Hence P maps surjectively to the quotient group S2(Zp)
/
T2(p

2), which is cyclic
of order p. As mentioned in section 3.3, Ω acts on that quotient group by the character
ξ−1. Therefore, Ω acts on the corresponding quotient of P̃ by the character ξ−1. Now eξ-1P̃
maps surjectively onto that quotient. As before, lemma 3.2.1 then implies that P has a
ξ−1-element B with a nontrivial image in S2(Zp)

/
T2(p

2). Thus, B is not upper triangular

modulo p2. Just as for A, we have B ∈ P (0). Also, the image of B in U2(Fp) will be trivial
since Ω acts by ξ on that group, and by ξ−1 on the image of B. (This is where the assumption
that ξ 6= ξ−1 is needed.) It follows that B ∈ C2(p).

The elements A,B ∈ P (0) satisfy the properties (a) and (b) stated in proposition 3.1.1. It

follows that they generate S
(0)
2 (Zp) topologically. Since P

(0) is a closed subgroup of S
(0)
2 (Zp),

we must indeed have P (0) = S
(0)
2 (Zp). As for the final assertion, the additional assumption

implies that there exists a matrix C ∈ P such that det(C) is a topological generator of
1 + pZp. Thus, C satisfies property (c) in proposition 3.1.1. The equality P = S2(Zp)
therefore follows. Alternatively, one can use formula (1). �

4.2. The proof of theorem 1. We assume that E is defined over Q and has a Q-isogeny of
degree p, that p ≥ 7, and that ϕψ−1 is not of order 2. We must just verify the assumptions
in proposition 4.1.1 when we take F = Q. We then can conclude that the image of ρE,p
contains S2(Zp), which is what theorem 1 asserts.

First of all, we have ϕψ = ω, the character giving the action of GQ on µp. Since ω is odd,
it is clear that ϕ 6= ψ. Hence ξ = ϕψ−1 has order at least 3. It therefore suffices to verify the
two assumptions in proposition 4.1.1 about isogenies. It is known that elliptic curves over
Q cannot have Q-isogenies of degree p2 when p ≥ 7. That assertion follows from [Maz] for
most primes, from [Lig] or [Ken2] for p = 7, and from [Ken1] for p = 13. This justifies one
assumption. However, it also follows that e = 1 and the Q-isogeny class of E is of type I in
the terminology of section 2.5. Consequently, E has only one independent cyclic isogeny of
degree p and so the sequence (6) is nonsplit, verifying the other assumption.

Remark 4.2.1. If p ≡ 1 (mod 4), then the hypothesis in theorem 1 that ϕψ−1 not be of
order 2 is automatically satisfied. To see this, note that

(7)
(
ϕψ−1

) p−1

2 =
(
ωψ−2

) p−1

2 = ω
p−1

2 ,

which is a character of order 2. Hence the order of ϕψ−1 is not a divisor of p−1
2
, and so

must be divisible by the highest power of 2 dividing p − 1. In particular, the hypothesis in
theorem 1 concerning ϕψ−1 is automatically satisfied for p ∈ {13, 17, 37}, and also for p = 5.
Those are the only primes satisfying p ≡ 1 (mod 4) for which cyclic Q-isogenies of degree p
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can exist according to the results in [Maz]. The statements about j-invariants and isogenies
mentioned in the rest of this remark are also from Mazur’s paper.

If E has good, ordinary reduction or multiplicative reduction at p, then ϕψ−1 has order
p−1. This is clear since the restriction of that ratio to the inertia subgroup of GQp

will then
coincide with ω±1. Now ϕψ−1 is unchanged by quadratic twists and so depends only on the
j-invariant of E (at least for p ≥ 5). In particular, for p = 37, there are just two j-invariants
of elliptic curves over Q which have Q-isogenies of degree 37. They are represented by two
elliptic curves E of conductor 1225. Since 37 ∤ 1225, E has good reduction at 37. The
reduction must be ordinary because the GQ37

-module E[37] is reducible. Hence ϕψ−1 has
order 36 when p = 37.

There are two j-invariants of elliptic curves over Q with a cyclic Q-isogeny of degree
17. In this case, (7) implies that ϕψ−1 has order 16. There are infinitely many distinct
j-invariants for elliptic curves E over Q with a Q-isogeny of degree p = 13. The order of
ϕψ−1 is either 4 or 12. If E has good reduction at 13, or multiplicative reduction, then
ϕψ−1 has order 12, as explained above. The first such examples are the curves in the isogeny
classes 147B,C in [Cre]. In response to my query, W. Stein and S. Yazdani found the example
y2 = x3 − 338x+ 2392, a curve of conductor 28 · 5 · 132. It has a Q-isogeny of degree 13 and
ϕψ−1 turns out to have order 4.

As for p = 11, any non-CM elliptic curve over Q with a Q-isogeny of degree 11 is
isomorphic to a quadratic twist of one of the two elliptic curves in the isogeny class 121A.
Thus, it suffices to consider an elliptic curve E in 121A. The characters ϕ and ψ can only
be ramified at 11 for such an E. Hence, those characters are powers of ω, say ϕ = ωa

and ψ = ωb, where a, b ≥ 0 satisfy a + b ≡ 1 (mod 10). As a consequence. we obtain a
congruence of the form

aq(E) ≡ qa + qb (mod 11)

for all primes q 6= 11. Here aq(E) is the Hecke eigenvalue associated to q. One can interpret
aq(E) as the trace of ρE,11(gq), where gq is the Frobenius element for a prime of Q(E[11∞])
lying above q. The above congruence follows immediately from that interpretation. The
table of Hecke eigenvalues in [Cre] shows that a2(E) = −1. One deduces easily that {ϕ, ψ} =
{ω2, ω9}. Thus, the ratio ϕψ−1 has order 10 and theorem 1 applies to E, and to all quadratic
twists of E, when p = 11.

In summary, for p ≥ 11, the assumption in theorem 1 that ϕψ−1 is not of order 2 is
automatically satisfied if E is non-CM. In contrast, if p = 7, then ϕψ−1 can have order 6 or
order 2, both cases occurring for infinitely many distinct j-invariants. Of course, theorem 1
applies if the order is 6. It will be shown in [GRSS] that the conclusion in theorem 1 is still
valid for p = 7 when ϕψ−1 has order 2, except for the two j-invariants corresponding to the
elliptic curves of conductor 49. Those curves have complex multiplication. ♦

19



Remark 4.2.2. Our first proof of theorem 1 was somewhat different. It also made use of
the same results from [Gre] that have been already used here. The original argument showed
that P (0) must contain the specific set

{I2 + E12, I2 + pE21} ,

and therefore the subgroup S
(0)
2 (Zp) topologically generated by that set. The additional

ingredient in that argument will be useful itself and so we give it here as a lemma.

Lemma 4.2.3. Suppose that ξ = ϕψ−1 has order at least 3. If A is a ξ-element of S2(Zp),
then A = (I2+E12)

a for some a ∈ Zp. If B is a ξ−1-element of S2(Zp), then B = (I2+pE21)
b

for some b ∈ Zp.

Proof. Suppose that χ ∈ Ω̂ has order at least 3, that C is a χ-element in S2(Zp), and
that C 6= I2. Let λ be an eigenvalue for C in Qp. Then λ is a principal unit in Qp(λ),

an extension of Qp of degree at most 2. Also, for any α ∈ Ω, the matrices C and Cχ(α)

are conjugate and hence λχ(α) is also an eigenvalue for C. Since the character χ has at
least three distinct values, and C has at most two distinct eigenvalues, it follows that λ is a
p-power root of unity. Also, the assumption about ξ implies that p > 3 and therefore that
[Qp(µp) : Qp] = p− 1 > 2. Therefore, we must have λ = 1. That is, C must be a unipotent
matrix.

Since C 6= I2, the kernel of C − I2 has Zp-rank 1. Let v be a generator of that kernel.
All the eigenvectors for C are in Zpv. Suppose that α ∈ Ω. The fact that C is an Ω-element
implies that αv is also an eigenvector for C and hence a multiple of v. Therefore, Zpv is an
Ω-invariant Zp-submodule of Tp(E). It follows that v is either in Zpvϕ or in Zpvψ. That is,
either vϕ or vψ is an eigenvector for C. More precisely, either Cvϕ = vϕ or Cvψ = vψ. In the
first case, C is upper triangular and hence of the form C = I2+aE12 for some a ∈ Zp. In this
case, χ = ξ. In the second case, C is lower triangular and hence of the form C = I2 + aE21

for some a ∈ Zp. But C ∈ S2(Zp) and hence a = pb for some b ∈ Zp. In this case, χ = ξ−1.
The stated assertions about A and B follow immediately. �

It is worth pointing out the following example which shows the importance of the as-
sumption about ξ = ϕψ−1 in the above lemma. Suppose that ξ has order 2. Thus, Ω consists

of matrices which are scalar multiples of

[
1 0
0 −1

]
or of I2. One can verify that the matrix

(8) A =

[√
1 + p 1
p

√
1 + p

]
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is a ξ-element of S2(Zp). The images of A in S2(Zp)/C
(0)(p) and in S2(Zp)/T2(p

2) are
generators of each of those groups. Thus, A has a nontrivial image in U2(Fp) and A is not
upper triangular modulo p2. In this example, Ω acts by ξ on a 2-dimensional Fp-subspace

W of S̃2(Zp). The images of C2(p) and of T2(p
2) are 1-dimensional subspaces of W as is the

subspace generated by the image of A, but they are all different subspaces.

The above lemma justifies the statements mentioned at the beginning of this remark. The
matrix A occurring in the proof of proposition 4.1.1 must have the form A = (I2 + E12)

a.
Since A has a nontrivial image in U2(Fp), we have a ∈ Z×

p . Since P (0) contains A, it also
contains I2+E12. The matrix B occurring in the proof has the form B = (I2+pE21)

b. Since
B is not upper triangular modulo p2, we have b ∈ Z×

p . Since P
(0) contains B, it also contains

I2 + pE21. ♦

4.3. An alternate criterion for P = S2(Zp). We will suppose throughout this section that
F = Q, that p is an odd prime, that E has a Q-isogeny of degree p, and that the Q-
isogeny class of E is of type I. Let ξ = ϕψ−1. The other elliptic curve in the (Q, p)-isogeny
class of E is E/Φ, which we denote by E ′. Thus, E ′[p] contains a GQ-invariant subgroup Ψ′

isomorphic to Ψ as a GQ-module. Note that both Q(E[p]) and Q(E ′[p]) are cyclic extensions
of K = Q(Φ,Ψ) of degree p. Also, [K : Q] divides (p− 1)2 and is not divisible by p.

Let K∞ = Q(E[p∞]). Now P was defined at first as a subgroup of G = Gal(K∞/Q),
namely P = Gal(K∞/K). If H is any closed subgroup of G, we refer to KH

∞ as the fixed
field for H. We then have the following lemma. In the formulation, we describe various
subgroups of G in terms of the identification of G with a subgroup of GL2(Zp).

Lemma 4.3.1. The fields Q(E[p]), Q(E ′[p]), and K(µp2) are the fixed fields for the sub-

groups P ∩ C2(p), P ∩ T2(p2), and P ∩
(
C2(p

2)S
(0)
2 (Zp)

)
of G, respectively.

Proof. The fact that Q(E[p]) is the fixed field for P ∩ C2(p) is clear from the definitions.
Since det ◦ ρE,p is the p-power cyclotomic character, it is also clear that K(µp2) is the fixed

field for P ∩
(
C2(p

2)S
(0)
2 (Zp)

)
.

We have P 6⊂ T2(p
2) since E has no Q-isogeny of degree p2. Therefore, the index of

P ∩T2(p2) in P is p. Hence, it suffices to show that P ∩T2(p2) fixes the field Q(E ′[p]), which
just means that P ∩ T2(p2) acts trivially on E ′[p]. Now GQ acts on the subgroup Ψ′ of E ′[p]
by the character ψ, and P acts trivially on Ψ′. Let Θ denote the image of Zpvϕ under the
map Tp(E) → Tp(E)/p

2Tp(E) ∼= E[p2]. Thus, Θ is cyclic of order p2 and invariant under the
action of P ∩ T2(p2). Also, Θ contains Φ.

Let Φ′ be the image of Θ under the Q-isogeny E → E ′, a subgroup of E ′[p] which is
also invariant under the action of P ∩ T2(p2). Since Φ′ has order p and P ∩ T2(p2) is a pro-p
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group, its action on Φ′ is trivial. The actions of Ω on the subgroups Φ′ and Ψ′ are given by
the characters ϕ and ψ, respectively. Since ϕ 6= ψ, we have Φ′ 6= Ψ′. Thus, E ′[p] = Φ′ + Ψ′

and so P ∩ T2(p2) indeed acts trivially on E ′[p]. �

Proposition 4.3.2. We have P = S2(Zp) if and only if Q(E[p]) 6= Q(E ′[p]).

Proof. Consider the composite map P → S2(Zp) → S̃2(Zp). The kernel of this map is
P ∩ Fr

(
S2(Zp)

)
. We have the equality P = S2(Zp) if and only if that map is surjective.

That follows from the Burnside Basis Theorem. Remark 3.3.1 implies that P ∩ Fr
(
S2(Zp)

)

is the intersection of the three subgroups of P occurring in lemma 4.3.1. Thus, the fixed field

for P ∩Fr
(
S2(Zp)

)
is Q(E[p], E ′[p], µp2). Let A = Gal

(
Q(E[p], E ′[p], µp2)

/
K
)
. Since S̃2(Zp)

has Fp-dimension 3, it follows that P = S2(Zp) if and only if A has Fp-dimension 3. Now
Ω acts on A by conjugation. The ξ0-component of A can be identified with Gal(K(µp2)/K)
and has Fp-dimension 1. The actions of Ω on Gal

(
Q(E[p])/K

)
and Gal

(
Q(E ′[p])/K

)
are

given by the nontrivial characters ξ and ξ−1, respectively. It follows that

Q(E[p], E ′[p]) ∩ K(µp2) = K

and therefore A has Fp-dimension 3 if and only if Q(E[p]) 6= Q(E ′[p]), as stated. �

Theorem 1 is a consequence of the above proposition. For if p ≥ 7, then the Q-isogeny
class of E is of type I. Furthermore, Ω = Gal(K/Q) acts on Gal(Q(E[p])/K) by the character
ξ and on Gal(Q(E ′[p])/K) by the character ξ−1. Thus, if ξ 6= ξ−1, then we certainly have
Q(E[p]) 6= Q(E ′[p]). However, even if ξ = ξ−1, proposition 4.3.2 can be useful. In [GRSS],
we show that Q(E[p]) 6= Q(E ′[p]) under certain assumptions by considering the ramified
primes in those two fields.

5 The case p = 5.

5.1. A general result. We first prove a result for p ≥ 5. We will follow the set-up and
notation of section 4. In particular, we continue to assume that ϕ 6= ψ, we identify Ω with a
subgroup of AutZp

(
Tp(E)

)
and we pick a basis {vϕ, vψ} for Tp(E) as before. We then identify

AutZp

(
Tp(E)

)
with GL2(Zp). We have various subgroups of GL2(Zp) to consider, which we

continue to denote by G, P, P (0), etc., defined exactly as previously. The terminology and
observations in section 2.5 will be helpful. The hypotheses in proposition 4.1.1 are satisfied
if the (F, p)-isogeny class of E is of type I and ϕψ−1 has order at least 3. As for type II, we
have the following result.
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Proposition 5.1.1. Assume that the F -isogeny class of E is of type II and that ϕψ−1 has
order at least 3. Then the image of ρE,p contains C

(0)
2 (p2). Furthermore, we have

[S
(0)
2 (Zp) : P

(0)] = pi ,

where 1 ≤ i ≤ 2. If we assume in addition that [F (µp2) : F ] is divisible by p, then we have
[S2(Zp) : P ] = pi, with the same value of i as above, and the image of ρE,p contains C2(p

2).

Proof. First of all, assume that (6) is nonsplit. According to section 2.5, E will have a cyclic
F -isogeny of degree p2, but none of degree p3. Furthermore, Ω acts on the kernel of that
isogeny by ϕ and hence that kernel is generated by the image of vϕ in E[p2]. It follows that
P ⊆ T2(p

2), but P 6⊂ T2(p
3). Now, T2(p

3) has index p in T2(p
2) and hence must be a normal

subgroup. The action of Ω on the quotient T2(p
2)/T2(p

3) is by the character ξ−1. This last
statement is clear since I2 + p2E21 is a ξ−1-element and its image generates that quotient.
Now P maps surjectively to T2(p

2)/T2(p
3) and therefore P̃ has a nontrivial quotient on

which Ω acts by ξ−1. It follows that eξ-1P̃ is mapped surjectively to T2(p
2)/T2(p

3). Thus, P̃
contains a ξ−1-element x whose image in T2(p

2)/T2(p
3) generates that group. Lemma 3.2.1

implies that P itself contains a ξ−1-element B such that the image of B in T2(p
2)/T2(p

3) is
nontrivial. That is, B is upper triangular modulo p2, but not modulo p3.

Lemma 4.2.3 implies that B is a power of I2+pE21 and hence has the form B = I2+cE21,
where c = p2a and a ∈ Z×

p . Note that det(B) = 1. Therefore, we see that B ∈ C
(0)
2 (p2) ∩ P .

Let B̃ denote the image of B in the Frattini quotient of C
(0)
2 (p2). Then the map (3) (for

k = 2) sends B̃ to an element of M
(0)
2 (Fp) which is not upper triangular. Lemma 3.1.2

implies that C̃
(0)
2 (p2) is generated by B̃ as an Fp[U2(Fp]-module. Since P (0) contains an

element A whose image in U2(Fp) is nontrivial, it follows that C
(0)
2 (p2) has a topologically

generating set consisting of matrices of the form AiBA−i, where 0 ≤ i ≤ p − 1. Therefore,
P (0) indeed contains C

(0)
2 (p2) in the case where (6) is nonsplit. Although it wasn’t needed

above, one can see that P contains the specific matrices I2 + E12 and I2 + p2E21.

Continuing to assume that (6) is nonsplit, the fact that I2 + E12 is in P (0) implies that

(I2+E12)
a = I2+aE12 is in P

(0) for all a ∈ Zp. Therefore, P
(0) contains N

(0)
2 (p2), a subgroup

defined in section 3.3. Since [T
(0)
2 (p2) : N

(0)
2 (p2)] = p, it follows that either P (0) = T

(0)
2 (p2)

or P (0) = N
(0)
2 (p2). Thus, the index of P (0) in T

(0)
2 (p2) is either 1 or p. Since T (0)(p2) itself

has index p in S(0)(Zp), the index [S(0)(Zp) : P
(0)] will indeed be either p or p2.

Now assume that E has two independent F -isogenies of degree p, i.e., that (6) is split.
According to section 2.3, the index [SL2(Zp) : P (0)] is the same as in the case where (6)
is nonsplit. Hence the index [S(0)(Zp) : P

(0)] will also be either p or p2. However, we now

have P (0) ⊆ C
(0)
2 (p), a subgroup of S2(Zp) of index p. Thus, the index [C

(0)
2 (p) : P (0)] will
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be either 1 or p. One verifies easily that C
(0)
2 (p2) is generated topologically by p-th powers

of elements in C
(0)
2 (p), all of which are clearly contained in P (0). It follows that we indeed

have the inclusion C
(0)
2 (p2) ⊂ P (0).

The last statement in proposition 5.1.1 follows because the assumption about [F (µp2) : F ]
means that the image of GF under the homomorphism χp contains 1 + pZp. One can then
use section 2.3 to prove the index statement, applying it to P instead of G. The inclusion
C2(p

2) ⊂ P can then be deduced just as above. �

Note that, under the first assumptions in the proposition, the above proof shows that
P (0) contains N

(0)
2 (p2) and, if we make the additional assumption about [F (µp2) : F ], then

P contains N2(p
2).

5.2. The proof of theorem 2. The first part of theorem 2 follows from proposition 4.1.1
and remark 4.2.1 (which shows that ϕψ−1 has order 4). The assumptions imply that the
Q-isogeny class of E is of type I (as defined in section 2.5). For the second part of theorem 2,
we use the fact that elliptic curves over Q have no cyclic isogenies of degree 125, a theorem
of Kenku [Ken2]. Hence, we can assume that the Q-isogeny class of E is of type II. In the
notation of proposition 5.1.1, we want to prove that i = 1. We need two lemmas.

Lemma 5.2.1. Suppose that p ≥ 5, that E is an elliptic curve defined over Qp which has
potentially supersingular reduction. Suppose that F is an abelian extension of Qp and that
the ramification index for F/Qp is 12. Then

∣∣E(F)[p]
∣∣ ≤ 12.

We will apply this for p = 5, but here is an illustration for p = 13. Suppose that E
is an elliptic curve defined over Q13 which has an isogeny of degree 13 defined over Q13.
Suppose that Φ is the kernel of that isogeny. Thus, [Q13(Φ) : Q13] obviously divides 12. One
can choose an F which contains Q13(Φ) and satisfies the hypothesis in lemma 5.2.1. But
the inequality stated in the lemma will obviously not be satisfied. Therefore, E must have
(potentially) ordinary or multiplicative reduction.

Proof. Since p ≥ 5, E achieves good reduction over the cyclic extension of Qunr
p of degree 12.

Thus, replacing F by an unramified extension if necessary, we can assume that E achieves
good supersingular reduction over F . Let O denote the maximal order in F , m denote its
maximal ideal, and m denote the maximal ideal of the algebraic closure Qp. Let Ê denote
the formal group for E over O, a formal group of height p2 in a parameter t. Note that
E(F)[p] = Ê(m)[p].

Multiplication by p on Ê is given by a power series F (t) with coefficients in O, the
coefficient of t being p. Writing F (t) = tG(t), the constant term of G(t) is p. The roots
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of G(t) in m are the values of t giving the points of order p on Ê(m). By the Weierstrass
Preparation Theorem, there exists a monic polynomial g(t) ∈ O[t] of degree p2 − 1 which
has the same roots t ∈ m as G(t), whose constant term c satisfies ordp(c) = 1, and whose
nonleading terms are all inm. Here ordp is the valuation on F normalized so that ordp(p) = 1.

The roots of g(t) are distinct. The points of Ê(m) of order p correspond to the roots of g(t) in
m. The above remarks imply that the number of roots of g(t) in m is precisely |E(F)[p]|−1.

If one expresses g(t) as a product of irreducible polynomials in F [t], then each factor
has its constant term in m. Thus, the number of irreducible factors of g(t) is at most 12.
They cannot all be linear because g(t) has degree p2 − 1, which is at least 24. Thus, g(t)
has at most 11 linear factors over F , and hence at most 11 roots in m. The bound on the
cardinality of Ê(m)[p] follows from this. �

Lemma 5.2.2. Suppose that E is an elliptic curve over Q5 and that E has two independent
cyclic isogenies of degree 5 defined over Q5. Then E has either potentially ordinary or
potentially multiplicative reduction. Consequently, E[5∞] contains a GQ5

-invariant subgroup
C isomorphic to Q5/Z5 as a group. The action of the inertia subgroup IQ5

of GQ5
on

D = E[5∞]/C is through a quotient group of order dividing 4.

Proof. The assumption about isogenies implies that Gal
(
Q5(E[5])/Q5

)
is an abelian group

of exponent dividing 4. Since Q5(µ5) is a subfield of Q5(E[5]), the exponent is exactly 4.
By local class field theory (or Kummer theory), one sees that Q5(E[5]) is contained in the
compositum of Q5(µ5) and the unramified extension of Q5 of degree 4. Now the unramified
quadratic extension of Q5 has a cyclic extension of degree 3 which is totally ramified. Let
F be the compositum of all of these fields.

The ramification index of F/Q5 is 12. Note that E[5] ⊂ E(F). Thus,
∣∣E(F)[5]

∣∣ = 25.
Lemma 5.2.1 implies that E can’t have potentially supersingular reduction. It follows that
E[5∞] indeed has a subgroup almost as described, namely C = Ê(m)[5∞], which is at least

invariant under the action of GF . Since Ê has height 1, we have C ∼= Q5/Z5 and hence
D = E[5∞]/C ∼= Q5/Z5 too. The action of the inertia subgroup IF of GF on D is trivial.
The action of IF on C is given by the 5-power cyclotomic character χ5, restricted to IF ,
which has infinite order. Note that D is the maximal quotient of E[5∞] on which IF acts
trivially. This action of IF uniquely determines C.

Since F/Q5 is normal, it is clear that C is actually GQ5
-invariant. The action of IQ5

on D is given by a homomorphism IQ5
→ Z×

5 which factors through Gal(F/Q5). Since the
torsion subgroup of Z×

5 has order 4, that homomorphism indeed factors through a quotient
of IQ5

of order dividing 4. �

Lemma 5.2.2 was pointed out to the author by Karl Rubin and Alice Silverberg. They
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verified it by using a parametric description of elliptic curves over Q which have two inde-
pendent Q-isogenies of degree 5. The j-invariants of curves in the family are values of a
certain rational function. They could explicitly verify that the values which are 5-integral
reduce modulo 5 to non-supersingular j-invariants in F5. The usefulness of the above lemma
in the following proof was also pointed out by Rubin and Silverberg.

Proof of the second part of theorem 2. Let γ, δ : GQ5
→ F×

5 be the characters giving the
action of GQ5

on C[5] and D[5] ∼= E[5]/C[5], respectively. One has γδ = ω, where ω is
now considered as a character of GQ5

. Consequently, one sees easily that γ 6= δ. Thus, the
composition factors C[5] and D[5] in E[5] are nonisomorphic.

Since the index in question is unchanged by a Q-isogeny, we are free to choose E so that
it has a cyclic Q-isogeny of degree 25. We denote the kernel of such an isogeny by Φ♯ and
assume that Φ = Φ♯[5]. If we regard Φ and Ψ as GQ5

-modules, then they must be isomorphic
to C[5] and D[5] in some order. Replacing E by a Q-isogenous curve if necessary, we can
assume that Φ ∼= D[5]. (If Φ ∼= C[5], replace E by E/Φ♯. ) Since C[5] 6∼= D[5], it is clear
that Φ ∩ C is trivial. It follows that Φ♯ ∩ C is trivial too. Therefore, the map E[5∞] → D
induces an isomorphism

Φ♯ ∼= D[25]

for the action of GQ5
. Hence the ramification index of 5 in Q

(
Φ♯

)
/Q divides 4.

Obviously, Q
(
Φ♯

)
is a cyclic extension of Q of degree dividing 20. We now show that this

degree is divisible by 5. Assume to the contrary that [Q(Φ♯) : Q] divides 4. Now Q
(
Φ♯

)
6= Q

because E(Q) can’t have a point of order 25. Thus, Q
(
Φ♯

)
contains a quadratic field F over

which it has degree 1 or 2. The action of GF on Q
(
Φ♯

)
is given by a character of order 1 or

2. It follows that either E, or a quadratic twist of E over F , has a rational point over F of
order 25. This contradicts a theorem of Kenku [Ken2] which asserts that the modular curve
X1(25) has no noncuspidal rational points over quadratic extensions of Q.

Hence Q
(
Φ♯

)
is a cyclic extension of Q of degree divisible by 5. Its unique subfield of

degree 5 over Q is unramified at 5. It must therefore be ramified at some prime ℓ 6= 5. Let
Ψ♯ = E[25]/Φ♯ and let K♯ = Q(Φ♯,Ψ♯). The ramification index for ℓ in the extension K♯/Q
will be divisible by 5. Of course, K = Q(Φ,Ψ) is a subfield of K♯, we have 5 ∤ [K : Q], and
hence the ramification index for ℓ in the extension K♯/K is divisible by 5.

The action of Gal(K♯/Q) on Φ♯ and Ψ♯ is given by homomorphisms

ϕ♯, ψ♯ : Gal(K♯/Q) −→ (Z/25Z)× ,

respectively. Thus, we obtain an injective homomorphism ϕ♯ × ψ♯ from Gal(K♯/Q) to
(Z/25Z)× × (Z/25Z)×. Since Gal(K♯/K) acts trivially on Φ×Ψ, its image under ϕ♯ × ψ♯

is contained in the Sylow 5-subgroup of (Z/25Z)× × (Z/25Z)×, which has order 25. Thus,
Gal(K♯/K) has exponent 5 and order dividing 25.
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The product ϕ♯ψ♯ is the homomorphism ω♯ giving the Galois action on µ25. It follows
that K(µ25) ⊆ K♯. It is clear that [K(µ25) : K] = 5. Furthermore, the above prime ℓ is
unramified in K(µ25)/K, and therefore its ramification index for the extension [K♯ : K(µ25)]
is divisible by 5. Hence, [K♯ : K] must be divisible by 25. It follows that [K♯ : K] = 25, that
Gal(K♯/K) is the Sylow 5-subgroup of Gal(K♯/Q), and is isomorphic to (Z/5Z)2.

By definition, there is a surjective map from P to Gal(K♯/K). It is given by the action
of P on Φ♯ ×Ψ♯, i.e., by the restrictions of ϕ♯ and ψ♯ to P . Now we have the inclusions

N2(25) ⊆ P ⊆ T2(25) .

The first was pointed out after the proof of proposition 5.1.1. The second inclusion is due
to the choice of E, just as at the beginning of that proof. The natural action of T2(25) on

Φ♯ × Ψ♯ is just the map from T2(25) to
(
(1 + 5Z5)/(1 + 25Z5)

)2
, the map to the diagonal.

The kernel of that map is N2(25). The restriction of that map to P gives the action of P
mentioned above. The image of P and T2(25) both have order 25. The maps are surjective.
It follows that P = T2(25). Therefore, we indeed have [S2(Z5) : P ] = 5. The assertion in
theorem 2 follows from this together with the invariance of that index under Q-isogeny. �
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