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The Mordell-Weil Theorem

Suppose that E is an elliptic curve defined over a number field F .
Let E (F ) denote the set of points on E with coordinates in the
field F . Under a certain simply defined group operation, E (F )
becomes an abelian group, the Mordell-Weil group for E over F .

We recall the classical Mordell-Weil Theorem.

Mordell-Weil Theorem. Suppose that E is an elliptic curve

defined over a number field F . Then E (F ) is a finitely generated

abelian group. That is,

E (F ) ∼= Zr × T ,

where r = rank
(
E (F )

)
is a nonnegative integer and T is a finite

abelian group.



Two examples

Two specific examples will occur later in this talk. We take
F = Q.

E1 : y2 = x3 + x − 10.

We have E1(Q) ∼= Z/2Z. It is generated by (2, 0). Thus,
rank

(
E1(Q)

)
= 0.

E2 : y2 = x3 − 584x + 5444.

We have E2(Q) ∼= Z. It is generated by (−8, 98). Thus,
rank

(
E2(Q)

)
= 1.



Selmer groups

A crucial ingredient in the proof of the Mordell-Weil theorem is to
show that E (F )/nE (F ) is finite for at least one n ≥ 2. Actually,
one shows that E (F )/nE (F ) is finite for all n by defining a map
from E (F )/nE (F ) to the Selmer group for E over K and showing
that the kernel and the image of that map are both finite.

We will regard F as a subfield of Q, a fixed algebraic closure of Q.
Let Etors denote the torsion subgroup of E (Q). Then

Etors
∼= (Q/Z)2

as a group. One has a natural action of GF = Gal(Q/F ) on Etors .

The Selmer group for E over F will be denoted by SelE (F ). It is a
certain subgroup of the Galois cohomology group H1(GF , Etors).
Its definition involves Kummer theory for E and is based on the
fact that the group of points on E defined over any algebraically
closed field is a divisible group.



Kummer theory for E

We will write H1(F , Etors) instead of H1(GF , Etors). If P ∈ E (F )
and n ≥ 1, then there exists a point Q ∈ E (Q) such that

nQ = P .

If g ∈ GF = Gal(Q/F ), then Q ′ = g(Q) also satisfies nQ ′ = P.
Thus, g(Q) − Q = Q ′ − Q ∈ Etors . The map

ϕ : GF → Etors defined by ϕ(g) = g(Q) − Q

is a 1-cocycle and defines a class [ϕ] in H1(F , Etors). In this way,
we can define the “Kummer map”

κ : E (F ) ⊗Z (Q/Z) −→ H1(F , Etors) .

The image of P ⊗
(

1
n

+ Z
)

is defined to be the class [ϕ]. The map
κ is an injective homomorphism.



The definition of the Selmer group.

If v is any prime of F , we can similarly define the v -adic Kummer
map

κv : E (Fv ) ⊗Z (Q/Z) −→ H1(Fv , Etors) ,

where Fv is the completion of F at v . One can identify GFv
with a

subgroup of GF and thereby define a restriction map

H1(F , Etors) −→ H1(Fv , Etors) .

One has such a map for each prime v of F , even for the
archimedean primes.

One then defines the Selmer group SelE (F ) to be the kernel of the
map

σ : H1(F , Etors) −→
⊕

v

H1(Fv , Etors)
/
im(κv ) ,

where v runs over all the primes of F . One shows that the image
of σ is actually contained in the direct sum.



Properties of the Selmer group

Note that E (F )⊗Z (Q/Z) ∼= (Q/Z)r , where r = rank
(
E (F )

)
. The

image of the Kummer map κ is clearly a subgroup of SelE (F ).

Thus, SelE (F ) contains a subgroup isomorphic to
(
Q/Z

)r
, namely

im(κ). The corresponding quotient group SelE (F )
/
im(κ) is called

the Tate-Shafarevich group for E over F .

It is conjectured that the Tate-Shafarevich group is finite. If this is
so, then im(κ) is precisely the maximal divisible subgroup of
SelE (F ), and one can then recover the value of r from the
structure of the SelE (F ).



The weak Mordell-Weil theorem

Note that E (F )/n(E (F ) ∼= E (F ) ⊗
(

1
n
Z

/
Z

)
. The proof that this

group is finite proceeds by showing that the composite map

E (F ) ⊗
(

1
n
Z

/
Z

)
−→ E (F ) ⊗

(
Q

/
Z

)
−→ SelE (F )

has finite kernel and image. The first map has finite kernel and the
second map is injective. Hence the kernel of the composite map is
finite. The image of that map is contained in SelE (F )[n], and this
is known to be a finite group for all n.



The p-primary subgroup of SelE (F )

The Selmer group SelE (F ) is a torsion group. For every prime p,
its p-primary subgroup will be denoted by SelE (F )p. It is known
that

SelE (F )p ∼=
(
Qp/Zp)

sp × Ap ,

where sp is a nonnegative integer and Ap is a finite abelian
p-group.

The integer sp is called the Zp-corank of SelE (F )p. If the
Tate-Shafarevich group for E over F is finite, as is conjectured to
be so, then sp = r for all primes p, where r = rank

(
E (F )

)
.

Note that Qp/Zp is isomorphic to (Q/Z)p, the p-primary subgroup
of Q/Z. Note also that

(
Qp/Zp

)
[p] has Fp-dimension 1.



A theorem of Faltings

The Galois group GF acts on Etors . A theorem of Faltings implies
that the elliptic curve is determined up to isogeny over F by the
action of GF on Etors . Let p be a prime and let n ≥ 0. The
pn-torsion on E will be denoted by E [pn]. We will let E [p∞]
denote the union of the E [pn]’s. The inverse limit of the E [pn]’s is
the p-adic Tate module Tp(E ). Let Vp(E ) = Tp(E ) ⊗Zp

Qp, a
two-dimensional vector space over Qp. All of these objects have a
continuous action of GF .

It was conjectured by Tate and proved by Faltings that E is
determined up to isogeny over F by the action of GF on Vp(E ).
The action of GF on Tp(E ), or equivalently on E [p∞], determines
E up to an isogeny defined over F whose kernel has order (which is
the so-called “degree of the isogeny”) prime to p.



A valuable insight

Suppose that E and E ′ are elliptic curves defined over F and that
there is an isogeny from E to E ′ over F of degree prime to p.
Then one can show that SelE (F )p and SelE ′(F )p are isomorphic.
Thus, the above theorem of Faltings raises the question of whether
one can somehow define SelE (F )p just in terms of the Galois
module E [p∞]. This turns out to be so.

The fact that SelE (F )p can be defined solely in terms of the Galois
module E [p∞] was a valuable insight in the 1980’s. It suggested a
way to give a reasonable definition of Selmer groups in a far more
general context. This idea was pursued by myself for the purpose
of generalizing conjectures of Iwasawa and of Mazur concerning
the algebraic interpretation of zeros of p-adic L-functions. It was
also pursued by Bloch and Kato for the purpose of generalizing the
Birch and Swinnerton-Dyer conjecture.



Defining SelE (F )p.

The p-primary subgroup SelE (F )p of SelE (F ) is a subgroup of
H1(F , E [p∞]). It can be defined as the kernel of the map

σp : H1(F , E [p∞]) −→
⊕

v

H1(Fv , E [p∞])
/
im(κv ,p) ,

where κv ,p is the restriction of κv to the p-primary subgroup of
E (Fv )⊗Z (Q/Z). Thus, if we can describe the image of κv ,p for all
primes v of F just in terms of the Galois module E [p∞], then we
will have such a description of SelE (F )p.

We next discuss briefly how this can be done.



The map κv ,p

The p-primary subgroup of E (Fv )⊗Z (Q/Z) is E (Fv )⊗Z (Qp/Zp).
The map κv ,p is an injective homomorphism

κv ,p : E (Fv ) ⊗Z (Qp/Zp) −→ H1(Fv , E [p∞]) .

The structure of E (Fv ) ⊗Z (Qp/Zp) depends on whether v divides
p or not.



The image of κv ,p when v ∤ p.

Suppose that v is a nonarchimedean prime and that the residue
field for v has characteristic ℓ, where ℓ 6= p. It is known that
E (Fv ) is an ℓ-adic Lie group. More precisely, E (Fv ) contains a

subgroup of finite index which is isomorphic to Z
[Fv :Qℓ]
ℓ . Since that

group is divisible by p, one sees easily that E (Fv ) ⊗Z (Qp/Zp), the
p-primary subgroup of E (Fv ) ⊗Z (Q/Z), actually vanishes. Hence

im(κv ,p) = 0

if v ∤ p. A similar argument shows that the same statement is true
if v is archimedean.



The image of κv ,p when v |p.

Now assume that the residue field for v has characteristic p. We
also assume that E has good ordinary reduction at v . Good
reduction means that one can find an equation for E over the ring
of integers of F such that its reduction modulo v defines an elliptic
curve E v over the residue field Fv . Considering the p-power
torsion, one has an exact sequence

0 −→ Cv −→ E [p∞] −→ E v [p∞] −→ 0 .

The reduction is ordinary if the integer

av = av (E ) = 1 + |Fv | − |E v (Fv )|

is not divisible by p. Equivalently, ordinary reduction at v means
E v [p∞] is isomorphic to Qp/Zp as a group. It then turns out that
Cv is also isomorphic to Qp/Zp.



im(κv ,p) when v |p, continued

Remarkably, one has the following description of the image of κv ,p:

im(κv ,p) = im

(
H1(Fv , Cv )div −→ H1(Fv , E [p∞])

)
.

One can characterize Cv as follows: It is a GFv
-invariant subgroup

of E [p∞] and E [p∞]/Cv is the maximal quotient of E [p∞] which
is unramified for the action of GFv

.

Thus, the above description of im(κv ,p) just involves the Galois
module E [p∞], as we wanted.



A general description of im(κv ,p)

If E does not have good ordinary reduction at v , there is still a
description of im(κv ,p) in terms of E [p∞]. This was given by
Bloch and Kato. It involves Fontaine’s ring Bcrys . One defines the
subspace H1

f

(
Fv , Vp(E )

)
of H1

(
Fv , Vp(E )

)
to be the kernel of the

map

H1
(
Fv , Vp(E )

)
−→ H1

(
Fv , Vp(E ) ⊗Qp

Bcrys

)
.

One has Vp(E )/Tp(E ) ∼= E [p∞]. Then, it turns out that im(κv ,p)
is precisely the image of H1

f

(
Fv , Vp(E )

)
under the natural map

from H1
(
Fv , Vp(E )

)
to H1(Fv , E [p∞]).



The finite Galois module E [p]

Since SelE (F )p is determined by the Galois module E [p∞], one
can ask whether SelE (F )[p] is determined by the Galois module
E [p]. This turns out not to be so.

Suppose that E1 and E2 are elliptic curves defined over F and that
E1[p] ∼= E2[p] as GF -modules. It is quite possible for SelE1(F )[p]
and SelE2(F )[p] to have different Fp-dimensions.

The elliptic curves E1 and E2 mentioned previously illustrate this
point. Take F = Q. In fact, it turns out that

SelE1(Q) = 0 , SelE2(Q) ∼= Q
/
Z

Take p = 5. It can be shown that E1[5] ∼= E2[5] as GQ-modules.
But SelE1(Q)[5] and SelE2(Q)[5] obviously have different
F5-dimensions.



Congruences

E1[p] ∼= E2[p] means that Tp(E1)/pTp(E1) ∼= Tp(E2)/pTp(E2).

We can think of such an isomorphism as a congruence modulo p

between the p-adic Tate modules Tp(E1) and Tp(E2).

It can also be interpreted in terms of the integers av mentioned
earlier. It means that

av (E1) ≡ av (E2) (mod p)

for all but finitely many primes v of F .

In the next part of this talk, we will consider this question in the
setting of Iwasawa theory. Thus, we will consider the Selmer group
for an elliptic curve E over a certain infinite extension F∞ of F ,
the so-called “cyclotomic Zp-extension” of F .



The cyclotomic Zp-extension of F

We fix a prime p. Let µp∞ denote the group of p-power roots of
unity in Q. The cyclotomic Zp-extension of F is a subfield F∞ of
F (µp∞), the field generated over F by µp∞ . The field F∞ is
characterized by the fact that Γ = Gal(F∞/F ) is isomorphic to the
additive group Zp. Thus, F∞ = ∪n≥0 Fn, where Fn is a cyclic
extension of F of degree pn.

We will usually take F = Q, partly for simplicity, but also because
some of the results that we state depend on deep theorems of Kato
and Rohrlich which are valid if F/Q is abelian, and in particular
when F = Q. The cyclotomic Zp-extension of Q is Q∞.

We will assume from here on that p is odd and that the elliptic
curves have good ordinary reduction at p.



The p-Selmer group over Q∞

Everything that we said before about describing SelE (F )p can be
easily extended to arbitrary subfields F of Q. In particular, we will
concentrate on SelE (Q∞)p. Assume that E is defined over Q. The
theorem of Kato and Rohrlich mentioned above implies that the
Zp-corank of SelE (Q∞)p is finite. This was conjectured to be so
by Mazur in the early 1970s and means that

SelE (Q∞)p ∼=
(
Qp/Zp

)λ(E)
× Ap ,

where λ(E ) is a nonnegative integer (which depends on p) and Ap

has finite exponent. Sometimes Ap is infinite. If E has no isogenies
over Q of degree p, then it is conjectured that Ap is finite. If that
is the case, then one can show that Ap = 0, i.e., that

SelE (Q∞)p ∼=
(
Qp/Zp

)λ(E)
.



Properties of SelE (Q∞)p

We will often assume that SelE (Q∞)p[p] is finite. Then

SelE (Q∞)p ∼=
(
Qp/Zp

)λ(E)
.

Note that if this is the case, then λ(E ) = dimFp

(
SelE (Q∞)p[p]

)
.

The definition of SelE (Q∞)p can be put in the following form:

SelE (Q∞)p = ker
(
H1(Q∞, E [p∞]) −→

⊕

ℓ

Hℓ(Q∞, E [p∞])
)

,

where ℓ varies over all primes and Hℓ(Q∞, E [p∞]) denotes the
direct sum of the H1(Q∞,η, E [p∞])

/
im(κη,p)’s over all primes η of

Q∞ lying over a prime ℓ.



The non-primitive Selmer groups

If ℓ 6= p, the local cohomology groups H1(Q∞,η, E [p∞]) for η|ℓ are
relatively easy to study. One finds that

Hℓ(Q∞, E [p∞]) ∼=
(
Qp/Zp

)δ(E ,ℓ)

where δ(E , ℓ) is a nonnegative integer which is easily determined.

Let Σ0 be a finite set of primes. Assume that p 6∈ Σ0. We define a
“non-primitive” Selmer group by

Sel
Σ0
E (Q∞)p = ker

(
H1(Q∞, E [p∞]) −→

⊕

ℓ6∈Σ0

Hℓ(Q∞, E [p∞])
)

.

Thus, we are omitting the local triviality conditions for the finite
set of primes in Σ0. Obviously, we have

SelE (Q∞)p ⊆ Sel
Σ0
E (Q∞)p .



Properties of Sel
Σ0

E (Q∞)p

The map whose kernel is SelE (Q∞)p turns out to be surjective. It
follows that

Sel
Σ0
E (Q∞)p

/
SelE (Q∞)p ∼=

⊕

ℓ∈Σ0

Hℓ(Q∞, E [p∞]) .

From the previously slide, we have

⊕

ℓ∈Σ0

Hℓ(Q∞, E [p∞]) ∼=
(
Qp/Zp

)δ(E ,Σ0) ,

where δ(E , Σ0) =
∑

ℓ∈Σ0

δ(E , ℓ).



Properties of Sel
Σ0

E (Q∞)p

Under the assumption that SelE (Q∞)[p] is finite, SelE (Q∞)p is
divisible, and so we will then have

Sel
Σ0
E (Q∞)p ∼= SelE (Q∞)p ⊕

( ⊕

ℓ∈Σ0

Hℓ(Q∞, E [p∞])

)
.

Consequently, we have

Sel
Σ0
E (Q∞)p ∼=

(
Qp/Zp

)λ(E ,Σ0) ,

where λ(E , Σ0) = λ(E ) + δ(E , Σ0).

Note that λ(E , Σ0) = dimFp

(
Sel

Σ0
E (Q∞)[p]

)
, assuming as before

that SelE (Q∞)[p] is finite.



Comparing the λ-invariants when E1[p] ∼= E2[p].

Suppose that E1 and E2 are elliptic curves defined over Q, that
both have good ordinary reduction at p, and that E1[p] ∼= E2[p] as
GQ-modules. As mentioned before, we think of such an
isomorphism as a congruence modulo p between the p-adic Tate
modules for E1 and E2. We will also assume that GQ acts
irreducibly on E1[p], and hence on E2[p].

Suppose that Σ0 is chosen to include all the primes where E1 or E2

has bad reduction. Under these assumptions, one can prove that

Sel
Σ0
E1

(Q∞)[p] ∼= Sel
Σ0
E2

(Q∞)[p] .

Consequently, if Sel
Σ0
E1

(Q∞)[p] is finite, then so is Sel
Σ0
E2

(Q∞)[p].



Comparing the λ-invariants when E1[p] ∼= E2[p], continued

Continuing to assume that E1[p] ∼= E2[p] and that Σ0 is chosen as
above, the Fp-dimensions of Sel

Σ0
E1

(Q∞)[p] and Sel
Σ0
E2

(Q∞)[p] will
be the same. That is, we have

λ(E1, Σ0) = λ(E2, Σ0)

and so one obtains the formula

λ(E1) + δ(E1, Σ0) = λ(E2) + δ(E2, Σ0) .

Since the quantities δ(E1, Σ0) and δ(E2, Σ0) can be evaluated, one
can then determine λ(E2) if one knows λ(E1).



In summary,

In summary, we have the following theorem:

Theorem A. Suppose that E1 and E2 are elliptic curves defined

over Q with good, ordinary reduction at p. Assume that p is an

odd prime, that E1[p] ∼= E2[p] for the action of GQ = Gal(Q/Q),
and that E1[p] is irreducible. Assume that SelE1(Q∞)[p] is finite.

Let Σ0 be a finite set of primes containing all primes where E1 or

E2 has bad reduction, but not containing p. Then we have

Sel
Σ0
E1

(Q∞)[p] ∼= Sel
Σ0
E2

(Q∞)[p] .

Therefore, we have λ(E1) + δ(E1, Σ0) = λ(E2) + δ(E2, Σ0).



An example

As an example, consider the two elliptic curves

E1 : y2 = x3 + x − 10, E2 : y2 = x3 − 584x + 5444

mentioned previously. They have conductors 52 = 4 · 13 and
364 = 4 · 7 · 13, respectively. We take p = 5 and Σ0 = {2, 7, 13}.

One has a congruence modulo 5 between the q-expansions of the
modular forms corresponding to E1 and E2, ignoring the terms for
powers qn where 7|n. It follows that E1[5] ∼= E2[5] as GQ-modules.
It turns out that SelE1(Q∞)5 = 0. Hence, one has λ(E1) = 0. One
finds that δ(E1, Σ0) = 5 and δ(E2, Σ0) = 0. Consequently, we have
λ(E2) = 5. That is, we have

SelE2(Q∞)5 ∼= (Q5

/
Z5)

5 .



Abundance of examples of congruences

Such isomorphisms E1[p] ∼= E2[p] are not hard to find for p = 3
and p = 5. In fact, it is shown by Rubin and Silverberg that for
p ≤ 5, and for a fixed elliptic curve E1 defined over Q, one can
explicitly describe equations defining an infinite family of
non-isomorphic elliptic curves E2 over Q with E2[p] ∼= E1[p].

Such isomorphisms are not common for p ≥ 7. However, if one
considers Hecke eigenforms of weight 2, then “raising the level”

theorems show that such isomorphisms occur for every odd prime
p. They can be formulated in terms of the Jacobian variety
attached to the Hecke eigenforms under consideration. An
isomorphism amounts to a congruence between the q-expansions
of two such eigenforms. The results described above extend
without any real difficulty to this case.



The results described above are from a paper by myself and
Vinayak Vatsal. Our purpose was to show that a certain
conjecture, the so-called Main Conjecture of Iwasawa Theory for
elliptic curves (and more generally for Hecke eigenforms), is
preserved by congruences. Under the assumptions that we have
been making, if the main conjecture is valid for E1, then it is also
valid for E2.

For the specific example considered on the previous slide, where
p = 5, the main conjecture is quite easy to verify for E1, and
therefore will also be true for E2.



Another approach

A somewhat different approach is taken by Emerton, Pollack, and
Weston. Their paper considers Selmer groups over Q∞ associated
to Hecke eigenforms of arbitrary weight which are ordinary in a
certain sense. If one fixes the residual representation and bounds
the prime-to-p part of the conductor, then such eigenforms occur
in Hida families which are parametrized by the set of prime ideals
of height 1 in a certain ring R.

If f is such an eigenform, then there is a natural Galois module Af

(which is the analogue for f of E [p∞]). One can define a natural
Selmer group for Af over Q∞.



Another approach

The above authors define a certain Selmer group for a Galois
module Af [π] (the analogue of E [p]) in such a way that one has
an isomorphism

SelAf [π](Q∞) ∼= SelAf
(Q∞)[π] .

However, the local conditions defining the Selmer group for Af [π]
depend on both the Galois module Af [π] and some data involving f

itself. If f1 and f2 are two such eigenforms, one can then determine
the difference between the coranks of the Selmer groups for Af1

and Af2 by examining the difference in those local conditions.



Artin twists

Suppose that E is defined over Q and p is a prime where E has
good ordinary reduction. The talk so far has concerned the
invariant λ(E ) associated to SelE (Q∞)p, and the non-primitive

analogues λ(E , Σ0) and Sel
Σ0
E (Q∞)p corresponding to a suitable

set Σ0.

We will now include another variable, an Artin representation σ.
Suppose that K is a finite Galois extension of Q and that
K ∩ Q∞ = Q. The Artin representations to be considered will
factor through

∆ = Gal(K/Q) .

That is, σ will be a finite-dimensional representation of the Galois
group ∆.



Artin twists

However, if K is allowed to vary over the finite extensions of Q

contained in some infinite Galois extension K of Q satisfying
K ∩ Q∞ = Q, then σ can vary over all Artin representations over
Q which factor through Gal(K/Q).

One interesting case is where Gal(K/Q) is a p-adic Lie group.
One can then often describe interesting infinite families of
irreducible Artin representations σ that factor through Gal(K/Q).



Some notation

If ℓ is a prime, let e(K , ℓ) denote the ramification index for ℓ in the
extension K/Q. Let

ΦK = {ℓ | ℓ 6= p and e(K , ℓ) is divisible by p } .

This finite set of primes will play an important role in this part of
the talk.

Let K∞ = KQ∞. Then K∞ is the cyclotomic Zp-extension of K .
Since K ∩ Q∞ = Q, we have

Gal(K∞/Q) ∼= ∆ × Γ

and both ∆ = Gal(K∞/Q∞) and Γ = Gal(K∞/Q∞) act on
SelE (K∞)p.



A representation space for ∆

We will assume that SelE (K∞)p[p] is finite. Then SelE (K∞)p has
finite Zp-corank and we can form a finite dimension representation
space for ∆ over Qp as follows: Let XE (K∞) denote the
Pontryagin dual of SelE (K∞)p, which is a Zp-module of finite
rank. Let

VE (K∞) = XE (K∞) ⊗Zp
Qp .

Its dimension will be denoted by λ(E , K ) and is equal to the
Zp-corank of SelE (K∞)p.

Suppose that Σ0 is a finite set of primes of Q as before. We
assume that p 6∈ Σ0. Then, essentially just as before, we can define
a non-primitive Selmer group Sel

Σ0
E (K∞)p. The Galois group ∆

also acts on this object. In the same way as above, we can define
the invariant λ(E , Σ0, K ).



Decomposing λ(E , K ) and λ(E , Σ0, K )

If σ is an absolutely irreducible representation of ∆ (defined over a
sufficiently large finite extension F of Qp), then we let λ(E , σ)
denote the multiplicity of σ in VE (K∞). We denote the set of
absolutely irreducible representations of ∆ by Irr(∆). Then we
have the following formula:

λ(E , K ) = dimQp

(
VE (K∞)

)
=

∑

σ

λ(E , σ) deg(σ) ,

where σ varies over Irr(∆).

In the same way as above, we can define the multiplicities
λ(E , Σ0, σ) for all σ ∈ Irr(∆). We have a decomposition

λ(E , Σ0, K ) =
∑

σ

λ(E , Σ0, σ) deg(σ) .



The difference between λ(E , Σ0, σ) and λ(E , σ)

In some cases, the set ΦK is empty. One can then take Σ0 to be
empty. Then we have λ(E , Σ0, σ) = λ(E , σ).

In general, just as with the λ-invariants discussed earlier in this
talk, one can evaluate the difference λ(E , Σ0, σ) − λ(E , σ) in a
straightforward way. As before, it can be expressed in the form

λ(E , Σ0, σ) − λ(E , σ) =
∑

ℓ∈Σ0

δ(E , ℓ, σ) ,

a sum over the primes ℓ in Σ0 where the terms are easily
determined integers.



Reducing representations of ∆ modulo m

If ρ is any representation of ∆ over F , then one can realize ρ by
matrices with coefficients in the integers O of the local field F .
One can then reduce ρ modulo the maximal ideal m of O,
obtaining a representation ρ̃ of ∆ over the finite field f = O/m.
This finite field has characteristic p. The semisimplification of ρ̃
will be denoted by ρ̃ss and is well-defined.

Suppose that ρ1 and ρ2 are two representations of ∆. If p divides
|∆|, then it is possible to have ρ̃ss

1
∼= ρ̃ss

2 as representations of ∆
over f even if ρ1 6∼= ρ2 as representations of ∆ over F . We will
think of an isomorphism ρ̃ss

1
∼= ρ̃ss

2 as a congruence modulo m

between the representations ρ1 and ρ2.



Congruence relations

Theorem B. Suppose that Σ0 is a finite set of primes of Q

containing ΦK , but not containing p. Assume that SelE (K∞)[p] is

finite. Assume that ρ1 and ρ2 are representations of ∆ such that

ρ̃ss
1
∼= ρ̃ss

2 . Then we have a linear relation

∑

σ

m1(σ)λ(E , Σ0, σ) =
∑

σ

m2(σ)λ(E , Σ0, σ)

where σ varies over Irr(∆) and mi (σ) denotes the multiplicity of σ
in ρi for i = 1, 2.

If ρ1 6∼= ρ2, but ρ̃ss
1
∼= ρ̃ss

2 , then the corresponding linear relation is
nontrivial. Such nontrivial relations occur whenever |∆| is divisible
by p.



PGL2-extensions

As an illustration of the above theorem, suppose that

∆ = Gal(K/Q) ∼= PGL2(Z/prZ)

for some r ≥ 1. Then K contains a subfield K0 such that

∆0 = Gal(K0/Q) ∼= PGL2(Z/pZ) .

It suffices to assume that SelE (K0,∞)[p] is finite. This turns out to
imply that SelE (K∞)[p] is finite.

As a consequence of some results in modular representation theory,
one can deduce that all the values of λ(E , Σ0, σ) as σ varies over
Irr(∆) can be determined if one knows the values of λ(E , Σ0, σ)
for σ in Irr(∆0).



Invariants involving E (K ) and SelE (K )p.

One can define some other invariants associated with each
σ ∈ Irr(∆). The group ∆ = Gal(K/Q) also acts on the
Mordell-Weil group E (K ) and on the p-Selmer group SelE (K )p.
Thus, we can define the following two representation spaces for ∆
over Qp:

E (K ) ⊗Z Qp , and XE (K ) ⊗Zp
Qp ,

where XE (K ) denotes the Pontryagin dual of SelE (K )p.

Define r(E , σ) and s(E , σ) to be the corresponding multiplicities of
σ in these representations space.



Invariants involving E (K ) and SelE (K )p.

By definition, one has

rank
(
E (K )

)
=

∑

σ

deg(σ)r(E , σ) ,

and

corankZp

(
SelE (K )p

)
=

∑

σ

deg(σ)s(E , σ) ,

where σ varies over Irr(∆).



Relationships between the various invariants

One has maps

E (K )Z ⊗ (Qp/Zp) −→ SelE (K )p −→ SelE (K∞)p .

The first map is the Kummer map and is injective. The second
map is the restriction map and turns out to have finite kernel. One
deduces that

r(E , σ) ≤ s(E , σ) ≤ λ(E , σ)

If the Tate-Shafarevich group for E over K is finite, as conjectured,
then the first inequality is an equality. However, the second
inequality is often strict. Nevertheless, one has the following
congruence if the irreducible representation σ is “orthogonal”:

s(E , σ) ≡ λ(E , σ) (mod 2) .



The parity conjecture

This refers to the conjecture that the sign in the (conjectural)
functional equation for the Hasse-Weil L-function L(E/K , s) is

(−1)rank

(
E(K)

)
. A refinement of this conjecture is that if σ is a

self-dual irreducible representation of ∆, then the sign in the
(conjectural) functional equation for the twisted Hasse-Weil
L-function L(E/F , σ, s) is (−1)r(E ,σ). There is a conjectural value
for this sign given by Deligne, and spelled out by Rohrlich.

For any prime p, there is a conjecture involving the invariants
s(E , σ), namely that the conjectural sign in the functional equation
for L(E/F , σ, s) is (−1)s(E ,σ). This is a conjecture about the parity
of s(E , σ), and hence (under suitable assumptions) the parity of
λ(E , σ). We refer to this as the p-Selmer version of the parity
conjecture.



Compatibility with congruence relations

With the assumptions in theorem B, and an additional assumption
that E has semistable reduction at primes of F lying above 2 and
3, one can show that the parity conjecture is compatible with the
congruence relations (viewed as equations over F2). The proof
involves a careful study of the δv (E , σ)’s.

As an illustration, suppose that ∆ ∼= PGL2(Z/pr+1Z) for r ≥ 0.
Let K0 be the subfield of K such that ∆0 = Gal(K0/F ) is
isomorphic to PGL2(Fp). One can show that if SelE (K0,∞)[p] is
finite, then SelE (K∞)[p] is finite too. Thus, it will be enough to
assume the finiteness of SelE (K0,∞)[p]. Suppose that Σ0 contains
ΦK/F . One then proves the following result.

Corollary. If the p-Selmer version of the parity conjecture is true

for all irreducible representations of ∆0, then it is also true for all

irreducible representations of ∆.



Other results on the parity conjecture

The p-Selmer version of the parity conjecture has been studied
since the 1060s. We can mention papers by B.J. Birch and N.
Stephens, by K. Kramer and J. Tunnell, by P. Monsky, by L. Guo,
by J. Neková̌r, by B.D. Kim, by V. and T. Dokchitser, by J.
Coates, T. Fukaya, K. Kato, and R. Sujatha, and by B. Mazur and
K. Rubin.

The results in the paper by Coates, Fukaya, Kato, and Sujatha are
somewhat parallel to the results just mentioned, although the
hypotheses and approach are rather different.



Some recent papers on the parity conjecture

We close by mentioning the most recent papers on this topic.

J. Coates, T. Fukaya, K. Kato, R. Sujatha, Root numbers, Selmer

groups, and non-commutatuve Iwasawa theory

R. Greenberg, Iwasawa theory, projective modules, and modular

representations

B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic

theory of local constants

T. Dokchitser, V. Dokchitser, Regulator constants and the parity

conjecture



Thank you!


