FIELD EXTENSIONS AND THEIR DEGREES

Notation and terminology: Suppose that F is a subfield of a field K. We then say that K is an extension of F. If K is finitely generated as a vector space over F, then we say that "K is a finite extension of F." We denote $dim_F(K)$ by [K:F]. We call [K:F] the "degree of K over F." In the following propositions, F, K, and L will always denote fields.

PROPOSITIONS

- 1: Suppose that K is a finite extension of F and that $\beta \in K$. Then β is algebraic over F.
- 2: Suppose that F is a subfield of a field K and that $\beta \in K$. Then the following statements are equivalent:
- (a) β is algebraic over F.
- (b) $F(\beta) = F[\beta]$.
- (c) $F(\beta)$ is a finite extension of F.

Furthermore, if β is algebraic over F and m(x) is the minimal polynomial for β over F, then $[F(\beta):F]=deg(m(x))$.

- 3: Suppose that F is a subfield of a field K, that $\beta_1,...,\beta_t \in K$, and that $\beta_1,...,\beta_t$ are all algebraic over F. Then $F(\beta_1,...,\beta_t) = F[\beta_1,...,\beta_t]$. Furthermore, $F(\beta_1,...,\beta_t)$ is a finite extension of F.
- 4: Suppose that F is a subfield of a field K and that K is a subfield of a field L. Then L is a finite extension of F if and only if L is a finite extension of K and K is a finite extension of F. If L is a finite extension of F, then

$$[L:F] = [L:K][K:F].$$

5: Suppose that F is a subfield of a field K, that K is a subfield of a field L, and that L is a finite extension of F. Then both [L:K] and [K:F] divide [L:F]. Furthermore,

$$K = L \iff [L:K] = 1 \iff [K:F] = [L:F]$$
.

6: Suppose that K is a finite extension of F and that $\beta \in K$. Let m(x) denote the minimal polynomial for β over F. Then deg(m(x)) divides [K:F]. Furthermore, deg(m(x)) = [K:F] if and only if $K = F(\beta)$.