THEOREMS ABOUT CONGRUENCES

1. (Linear Congruences). Suppose that $a, b \in \mathbf{Z}$ and that m is a positive integer. Assume that $\operatorname{gcd}(a, m)=1$. Then the congruence

$$
a x \equiv b \quad(\bmod m)
$$

has infinitely many solutions where $x \in \mathbf{Z}$. If x_{0} is one solution, then all the solutions are described by

$$
x \equiv x_{0} \quad(\bmod m) .
$$

2. (Linear Congruences). Suppose that $a, b \in \mathbf{Z}$ and that m is a positive integer. Let $d=\operatorname{gcd}(a, m)$. Then the congruence

$$
a x \equiv b \quad(\bmod m)
$$

has solutions where $x \in \mathbf{Z}$ if and only if $d \mid b$. If x_{0} is one solution, then all the solutions are described by

$$
x \equiv x_{0} \quad(\bmod m / d) .
$$

3. (Chinese Remainder Theorem.) Let $t \geq 1$. Suppose that m_{1}, \ldots., m_{t} are positive integers which are pairwise relatively prime. Suppose that a_{1}, \ldots, a_{t} are arbitrary integers. Consider the set of congruences

$$
\begin{equation*}
x \equiv a_{1} \quad\left(\bmod m_{1}\right), \quad \ldots . \quad, \quad x \equiv a_{t} \quad\left(\bmod m_{t}\right) . \tag{1}
\end{equation*}
$$

Let m be the product of the integers m_{1}, \ldots, m_{t}. Then there exists an integer a such that (1) is equivalent to the single congruence

$$
\begin{equation*}
x \equiv a \quad(\bmod m) \tag{2}
\end{equation*}
$$

Consequently, the set of congruences (1) has infinitely many solutions x and any two solutions are congruent to each other modulo m.
4. Suppose that $a \in \mathbf{Z}$, that m is a positive integer, and that $\operatorname{gcd}(a, m)=1$. Then there exists a positive integer k such that $a^{k} \equiv 1(\bmod m)$.

Definition: Assume that $\operatorname{gcd}(a, m)=1$. The smallest positive integer e such that

$$
a^{e} \equiv 1 \quad(\bmod m)
$$

is called the order of a modulo m. The integer e is denoted by $\operatorname{ord}_{m}(a)$.
5. Suppose that m is a positive integer and that a is an integer such that $\operatorname{gcd}(a, m)=1$. Let $e=\operatorname{ord}_{m}(a)$.
(a) Let $k \geq 0$. Then $a^{k} \equiv 1(\bmod m)$ if and only if $e \mid k$.
(b) Let $k_{1}, k_{2} \geq 0$. Then $a^{k_{1}} \equiv a^{k_{2}}(\bmod m)$ if and only if $k_{1} \equiv k_{2}(\bmod e)$.
6. (Fermat's Little Theorem.) Suppose that p is a prime and that a is an integer which is not divisible by p. Then $a^{p-1} \equiv 1(\bmod p)$.
7. (Euler's Theorem.) Suppose that m is a positive integer and that a is an integer such that $\operatorname{gcd}(a, m)=1$. Then $a^{\varphi(m)} \equiv 1(\bmod m)$.
8. Suppose that p is a prime and that a is an integer which is not divisible by p. Then $\operatorname{ord}_{p}(a)$ divides $p-1$.
9. Suppose that m is a positive integer and that a is an integer such that $\operatorname{gcd}(a, m)=1$. Then $\operatorname{ord}_{m}(a)$ divides $\varphi(m)$.
10. (The Primitive Root Theorem.) Let p be a prime. Then there exists an integer a such that $\operatorname{ord}_{p}(a)=p-1$. Furthermore, for any positive integer d which divides $p-1$, there exists an integer b such that $\operatorname{or}_{p}(b)=d$.
11. Suppose that p is a prime. The congruence $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $p=2$ or $p \equiv 1(\bmod 4)$.

