THEOREMS ABOUT CONGRUENCES

1. (Linear Congruences). Suppose that $a, b \in \mathbb{Z}$ and that m is a positive integer. Assume that gcd(a, m) = 1. Then the congruence

$$ax \equiv b \pmod{m}$$

has infinitely many solutions where $x \in \mathbf{Z}$. If x_0 is one solution, then all the solutions are described by

$$x \equiv x_0 \pmod{m}$$
 .

2. (Linear Congruences). Suppose that $a, b \in \mathbb{Z}$ and that m is a positive integer. Let d = gcd(a, m). Then the congruence

$$ax \equiv b \pmod{m}$$

has solutions where $x \in \mathbf{Z}$ if and only if d|b. If x_0 is one solution, then all the solutions are described by

$$x \equiv x_0 \pmod{m/d}$$

3. (Chinese Remainder Theorem.) Let $t \ge 1$. Suppose that m_1, \ldots, m_t are positive integers which are pairwise relatively prime. Suppose that a_1, \ldots, a_t are arbitrary integers. Consider the set of congruences

(1)
$$x \equiv a_1 \pmod{m_1}, \ldots, x \equiv a_t \pmod{m_t}$$
.

Let m be the product of the integers m_1, \ldots, m_t . Then there exists an integer a such that (1) is equivalent to the single congruence

(2)
$$x \equiv a \pmod{m}$$
.

Consequently, the set of congruences (1) has infinitely many solutions x and any two solutions are congruent to each other modulo m.

MORE THEOREMS ARE ON THE BACK OF THIS HANDOUT

4. Suppose that $a \in \mathbb{Z}$, that *m* is a positive integer, and that gcd(a, m) = 1. Then there exists a positive integer *k* such that $a^k \equiv 1 \pmod{m}$.

Definition: Assume that gcd(a, m) = 1. The smallest positive integer e such that

$$a^e \equiv 1 \pmod{m}$$

is called the order of a modulo m. The integer e is denoted by $ord_m(a)$.

5. Suppose that m is a positive integer and that a is an integer such that gcd(a, m) = 1. Let $e = ord_m(a)$.

(a) Let $k \ge 0$. Then $a^k \equiv 1 \pmod{m}$ if and only if e|k.

(b) Let $k_1, k_2 \ge 0$. Then $a^{k_1} \equiv a^{k_2} \pmod{m}$ if and only if $k_1 \equiv k_2 \pmod{e}$.

6. (Fermat's Little Theorem.) Suppose that p is a prime and that a is an integer which is not divisible by p. Then $a^{p-1} \equiv 1 \pmod{p}$.

7. (Euler's Theorem.) Suppose that m is a positive integer and that a is an integer such that gcd(a,m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

8. Suppose that p is a prime and that a is an integer which is not divisible by p. Then $ord_p(a)$ divides p-1.

9. Suppose that m is a positive integer and that a is an integer such that gcd(a,m) = 1. Then $ord_m(a)$ divides $\varphi(m)$.

10. (The Primitive Root Theorem.) Let p be a prime. Then there exists an integer a such that $ord_p(a) = p - 1$. Furthermore, for any positive integer d which divides p - 1, there exists an integer b such that $ord_p(b) = d$.

11. Suppose that p is a prime. The congruence $x^2 \equiv -1 \pmod{p}$ has a solution if and only if p = 2 or $p \equiv 1 \pmod{4}$.