BASIC PROPERTIES OF CONGRUENCES

The letters a, b, c, d, k represent integers. The letters m, n represent positive integers. The notation $a \equiv b \pmod{m}$ means that m divides a - b. We then say that a is congruent to $b \pmod{m}$.

- 1. (Reflexive Property): $a \equiv a \pmod{m}$
- 2. (Symmetric Property): If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- 3. (Transitive Property): If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Remark: The above three properties imply that " $\equiv \pmod{m}$ " is an equivalence relation on the set **Z**.

- 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $a c \equiv b d \pmod{m}$.
- 5. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.
- 6. Assume that $a \equiv b \pmod{m}$. Let $k \ge 1$. Then $a^k \equiv b^k \pmod{m}$.
- 7. Suppose that P(x) is any polynomial with coefficients in **Z**. Assume that $a \equiv b \pmod{m}$. Then $P(a) \equiv P(b) \pmod{m}$.
- 8. Assume that $a \equiv b \pmod{m}$. Then gcd(a,m) = gcd(b,m).
- 9. If $a \equiv b \pmod{m}$ and $n \mid m$, then $a \equiv b \pmod{n}$.
- 10. Assume that gcd(m, n) = 1. Assume that $a \equiv b \pmod{m}$ and that $a \equiv b \pmod{n}$. Then $a \equiv b \pmod{mn}$.
- 11. Suppose that $a \in \mathbb{Z}$. Then there exists a unique integer r such that $a \equiv r \pmod{m}$ and $0 \leq r \leq m-1$. This integer r is the remainder when a is divided by m.
- 12. Assume that $ca \equiv cb \pmod{m}$ and that (c, m) = 1. Then $a \equiv b \pmod{m}$.
- 13. Assume p is a prime. If $ab \equiv 0 \pmod{p}$, then either $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.
- 14. Assume that p is a prime and that $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.