Line Transversals in the Plane

Shira Zerbib

Iowa State University
Joint with Daniel McGinnis

A family of sets can be can be pierced by k lines if there are k lines whose union intersects every set in the family.

A family of sets can be can be pierced by k lines if there are k lines whose union intersects every set in the family.

A family has a line transversal if it can be pierced by one line.

A family of sets can be can be pierced by k lines if there are k lines whose union intersects every set in the family.

A family has a line transversal if it can be pierced by one line.
A family of compact convex sets F in \mathbb{R}^{2} has the $T(k)$ property if every k sets in F have a line transversals.

A family of sets can be can be pierced by k lines if there are k lines whose union intersects every set in the family.

A family has a line transversal if it can be pierced by one line.
A family of compact convex sets F in \mathbb{R}^{2} has the $T(k)$ property if every k sets in F have a line transversals.

Example: A family with the $T(3)$ property

A family of sets can be can be pierced by k lines if there are k lines whose union intersects every set in the family.

A family has a line transversal if it can be pierced by one line.
A family of compact convex sets F in \mathbb{R}^{2} has the $T(k)$ property if every k sets in F have a line transversals.

Example: A family with the $T(3)$ property

$T(K)$ property $\Longrightarrow T(K-1)$ property.

How many lines are needed to pierce a family with the $T(k)$ property?

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

What about $k=3$?

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

What about $k=3$?
Kramer (1975): $T(3)$ property \Longrightarrow pierced by 5 lines.

How many lines are needed to pierce a family with the $T(k)$ property?
Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

What about $k=3$?
Kramer (1975): $T(3)$ property \Longrightarrow pierced by 5 lines.
Eckhoff (1974): $T(3)$ property \nRightarrow pierced by 2 lines.

Eckhoff (1974): $T(3)$ property \nRightarrow pierced by 2 lines.

How many lines are needed to pierce a family with the $T(k)$ property? Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line. Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.

This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

What about $k=3$?
Kramer (1975): $T(3)$ property \Longrightarrow pierced by 5 lines.
Eckhoff (1974): $T(3)$ property \nRightarrow pierced by 2 lines.

How many lines are needed to pierce a family with the $T(k)$ property? Santalo (1940): For any $k, T(k)$ property \nRightarrow pierced by one line.
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.
This shows: for any $k \geq 4, T(k)$ property \Longrightarrow pierced by 2 lines.
$T(2)$ property \nRightarrow pierced by a constant number of line (Example: a set of point in general position).

What about $k=3$?
Kramer (1975): $T(3)$ property \Longrightarrow pierced by 5 lines.
Eckhoff (1974): $T(3)$ property \nRightarrow pierced by 2 lines.
Eckhoff (1993): $T(3)$ property \Longrightarrow pierced by 4 lines.
Question (Eckhoff, 1993)
Is it true that $T(3)$ property \Longrightarrow pierced by 3 lines?

Theorem (McGinnis-Z., 2021+)
$T(3)$ property \Longrightarrow pierced by 3 lines.

The KKM Theorem (Knaster-Kuratowski-Mazurkiewicz, 1928):

Let R_{1}, \ldots, R_{n} be open sets covering

$$
\Delta^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

The KKM Theorem (Knaster-Kuratowski-Mazurkiewicz, 1928):

Let R_{1}, \ldots, R_{n} be open sets covering

$$
\Delta^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

The KKM Theorem (Knaster-Kuratowski-Mazurkiewicz, 1928):

Let R_{1}, \ldots, R_{n-1} be open sets covering

$$
\Delta_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

The KKM Theorem (Knaster-Kuratowski-Mazurkiewicz, 1928):

Let R_{1}, \ldots, R_{n-1} be open sets covering

$$
\Delta_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

such that for every face $\sigma, \quad \sigma \subseteq \bigcup_{i \in \sigma} R_{i}$.

The KKM Theorem (Knaster-Kuratowski-Mazurkiewicz, 1928):

Let R_{1}, \ldots, R_{n-1} be open sets covering

$$
\Delta_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i}=1\right\}
$$

such that for every face $\sigma, \quad \sigma \subseteq \bigcup_{i \in \sigma} R_{i}$.
Then $\bigcap_{i=1}^{n} R_{i} \neq \emptyset$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines. Proof.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines. Proof. Let F be a family of sets with the $T(3)$ property.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$\left.p_{3}(x)=x_{1}+x_{2}+x_{3}\right\} \quad x_{1}+x_{2}+x_{3}+x_{4}, p_{0}(x)=0$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$\left.p_{3}(x)=x_{1}+x_{2}+x_{3}\right\} \quad x_{1}+x_{2}+x_{3}+x_{4} \quad p_{0}(x)=0$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{3}(x)=x_{1}+x_{2}+x_{3}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}+x_{4}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}+x_{4}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}+x_{4}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}+x_{4}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}+x_{4}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}$

Theorem (McGinnis-Z.): $T(3)$ property \Longrightarrow pierced by 3 lines.
Proof. Let F be a family of sets with the $T(3)$ property.
Scale the plane so that all the sets in F lie in a disk D of perimeter 1 .
Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \Delta^{5}$.
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1, x_{i} \geq 0$.
$p_{4}(x)=x_{1}+x_{2}+x_{3}$

We want to define a KKM cover of Δ^{5}. For this, we define sets A_{i} covering Δ^{6} as follows:

We want to define a KKM cover of Δ^{5}. For this, we define sets A_{i} covering Δ^{6} as follows:
set $x \in A_{i}$ if R_{x}^{i} contains a set in F.

We want to define a KKM cover of Δ^{5}. For this, we define sets A_{i} covering Δ^{6} as follows:
set $x \in A_{i}$ if R_{x}^{i} contains a set in F.

We want to define a KKM cover of Δ^{5}. For this, we define sets A_{i} covering Δ^{6} as follows:
set $x \in A_{i}$ if R_{x}^{i} contains a set in F.

Here: $x \in A_{2}$

- If there is some $x \notin \cup A_{i}$, then we are done: no set lies in a region R_{x}^{i}, so all the sets are pierced by the three lines

$$
\overline{p_{0}(x) p_{3}(x)}, \overline{p_{1}(x) p_{4}(x)}, \overline{p_{2}(x) p_{5}(x)}
$$

- If there is some $x \notin \cup A_{i}$, then we are done: no set lies in a region R_{x}^{i}, so all the sets are pierced by the three lines

$$
\overline{p_{0}(x) p_{3}(x)}, \overline{p_{1}(x) p_{4}(x)}, \overline{p_{2}(x) p_{5}(x)}
$$

- So we may assume $\Delta^{5} \subset \bigcup A_{i}$
- If there is some $x \notin \cup A_{i}$, then we are done: no set lies in a region R_{x}^{i}, so all the sets are pierced by the three lines

$$
\overline{p_{0}(x) p_{3}(x)}, \overline{p_{1}(x) p_{4}(x)}, \overline{p_{2}(x) p_{5}(x)}
$$

- So we may assume $\Delta^{5} \subset \bigcup A_{i}$
- Claim: In this case, A_{1}, \ldots, A_{6} form a KKM cover of Δ^{5}.
- By the KKM theorem there exists some $x \in \bigcap_{i=1}^{6} A_{i}$.
- By the KKM theorem there exists some $x \in \bigcap_{i=1}^{6} A_{i}$.

- By the KKM theorem there exists some $x \in \bigcap_{i=1}^{6} A_{i}$.

- \Longrightarrow There are 3 sets in F that are not pierced by a line
- By the KKM theorem there exists some $x \in \bigcap_{i=1}^{6} A_{i}$.

- \Longrightarrow There are 3 sets in F that are not pierced by a line
- a contradiction to the $T(3)$ property.

Colorful Versions

Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{6} be six families of compact convex sets in \mathbb{R}^{2}.
If every $A \in F_{i}, B \in F_{j}, C \in F_{k}, i<j<k$, have a line transversal, then there exists $i \in[6]$ such that F_{i} is pierced by 3 lines.

Colorful Versions

Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{6} be six families of compact convex sets in \mathbb{R}^{2}.
If every $A \in F_{i}, B \in F_{j}, C \in F_{k}, i<j<k$, have a line transversal, then there exists $i \in[6]$ such that F_{i} is pierced by 3 lines.

If all the F_{i} are the same we get the previous theorem.

Colorful Versions

Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{6} be six families of compact convex sets in \mathbb{R}^{2}.
If every $A \in F_{i}, B \in F_{j}, C \in F_{k}, i<j<k$, have a line transversal, then there exists $i \in[6]$ such that F_{i} is pierced by 3 lines.

If all the F_{i} are the same we get the previous theorem.
Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{4} be four families of compact convex sets in \mathbb{R}^{2}. If any collection of four sets, one from each F_{i}, has a line transversal, then there exists $i \in[4]$ such that F_{i} is pierced by 2 lines.

Colorful Versions

Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{6} be six families of compact convex sets in \mathbb{R}^{2}.
If every $A \in F_{i}, B \in F_{j}, C \in F_{k}, i<j<k$, have a line transversal, then there exists $i \in[6]$ such that F_{i} is pierced by 3 lines.

If all the F_{i} are the same we get the previous theorem.

Theorem (McGinnis - Z. 2021+)
Let F_{1}, \ldots, F_{4} be four families of compact convex sets in \mathbb{R}^{2}.
If any collection of four sets, one from each F_{i}, has a line transversal, then there exists $i \in[4]$ such that F_{i} is pierced by 2 lines.

If all the F_{i} are the same we get
Eckhoff (1964): $T(4)$ property \Longrightarrow pierced by 2 lines.

Proof.

Use the colorful KKM theorem (Gale, 1982).

Weakening the $T(3)$ condition

Definition (Holmsen 2013): Three sets A, B, C form a tight triple if $\operatorname{conv}(A \cup B) \cap \operatorname{conv}(A \cup C) \cap \operatorname{conv}(B \cup C) \neq \emptyset$.

Weakening the $T(3)$ condition

Definition (Holmsen 2013): Three sets A, B, C form a tight triple if

$$
\operatorname{conv}(A \cup B) \cap \operatorname{conv}(A \cup C) \cap \operatorname{conv}(B \cup C) \neq \emptyset
$$

Note: A, B, C have a line transversal $\Longrightarrow A, B, C$ are a tight triple.

Weakening the $T(3)$ condition

Definition (Holmsen 2013): Three sets A, B, C form a tight triple if

$$
\operatorname{conv}(A \cup B) \cap \operatorname{conv}(A \cup C) \cap \operatorname{conv}(B \cup C) \neq \emptyset
$$

Note: A, B, C have a line transversal $\Longrightarrow A, B, C$ are a tight triple. Definition: A family of sets F has the $T T$ property if every three sets in F form a tight triple.

Weakening the $T(3)$ condition

Definition (Holmsen 2013): Three sets A, B, C form a tight triple if

$$
\operatorname{conv}(A \cup B) \cap \operatorname{conv}(A \cup C) \cap \operatorname{conv}(B \cup C) \neq \emptyset
$$

Note: A, B, C have a line transversal $\Longrightarrow A, B, C$ are a tight triple.
Definition: A family of sets F has the $T T$ property if every three sets in F form a tight triple.

Note: $T(3)$ property $\Longrightarrow T T$ property.

Weakening the $T(3)$ condition

Theorem (Holmsen, 2013)
$T T$ property \Longrightarrow there is a line intersecting at least $\frac{1}{8}|F|$ members of F.

Weakening the $T(3)$ condition

Theorem (Holmsen, 2013)
$T T$ property \Longrightarrow there is a line intersecting at least $\frac{1}{8}|F|$ members of F.
Theorem (McGinnis - Z., 2021+)
$T T$ property \Longrightarrow pierced by 3 lines.

Weakening the $T(3)$ condition

Theorem (Holmsen, 2013)
$T T$ property \Longrightarrow there is a line intersecting at least $\frac{1}{8}|F|$ members of F.
Theorem (McGinnis - Z., 2021+)
$T T$ property \Longrightarrow pierced by 3 lines.
Theorem (McGinnis - Z., 2021+)
$T T$ property \Longrightarrow there is a line intersecting at least $\frac{1}{3}|F|$ members of F.

Open Problems

Conjecture (Martínez - Roldán - Rubin, 2020)
There exists a constant c with the following property: Suppose that F is an intersecting family of compact convex in \mathbb{R}^{3}. Then there a line intersecting $c|F|$ members of F.

Open Problems

Conjecture (Martínez - Roldán - Rubin, 2020)
There exists a constant c with the following property: Suppose that F is an intersecting family of compact convex in \mathbb{R}^{3}. Then there a line intersecting $c|F|$ members of F.

Bárány (2021): true for cylinders.

Fractional Versions

Question

What is the largest constant $0<\alpha(k)<1$ such that for any family F with the $T(k)$ property, there is a line intersecting $\alpha(k)|F|$ members of F ?

- $\alpha(k) \longrightarrow 1$ as $k \longrightarrow \infty$ (Katchalski, Liu 1980).
- $\alpha(k) \leq \frac{k-2}{k-1}$ (Holmsen 2010)
- $\frac{1}{3} \leq \alpha(3) \leq \frac{1}{2}$
- $\frac{1}{2} \leq \alpha(4) \leq \frac{2}{3}$

Open: What are $\alpha(3)$ and $\alpha(4)$?

Thank You!

