Project overviews

- Powers of higher nerves 3 studunts
- Fast computer code
- Computational evidence for a conjecture on graph algorithms (Evasiveness Conjecture)
- Topology of matching complexes 2 studuts
- Behavior of graphs under iterated matching operation
- Classification of matching complexes with certain topology

Simplicial complexes
$x=$ simplicial
complex

$$
\{a, b, c\} \in X \Rightarrow\{a, c\} \in X \Rightarrow\{c\} \in X
$$

Combinatorial: Collection of sets closed under taking subsets

Topological: Object in \mathbb{R}^{n} made by gluing simplices together
like the intoghes

Algebraic: Face ring \leftarrow imo most difficult
Q: How do these props interact?

Powers of higher nerves - Example 1

Powers of higher nerves - Example 2

Planes in \mathbb{R}^{3}
$N(u)$

Hollow tetrahedron

Powers of higher nerves

Our project:

- Higher nerves - finer intersection data
- Computer code for higher nerves
- Computational evidence related to the Evasiveness Conjecture

Tgraph algovithens

Matching complexes

Graph: Vertices and edges. Each pair of vertices either has an edge connecting them or not.

Matching: Set of edges such that no two share an endpoint.

w

Matching complexes - another example

G

MSG)

Example: C_{7} ??

Matching complexes - one more

Iterated matching graphs

$\stackrel{3}{3} i^{5}$

Two
special:
graphs

- A handful of other dissipate like G above
- ALL OTHERS EXPLODE!

Two-dimensional Buchsbaum matching complexes

$$
\begin{aligned}
& \text { One } \\
& \text { example : Torus is } 2 \text {-dim \& Buchsburm! } \\
& T_{\text {mathing comlex of }} k_{1,3}
\end{aligned}
$$

Two-dimensional Buchsbaum matching complexes

Two-dimensional Buchsbaum matching complexes

(a) \mathcal{B}_{7}

(c) \mathcal{B}_{9}

(b) \mathcal{B}_{8}

(d) Exceptional graph E_{1}

(e) Exceptional graph E_{2}

Some graphs whose matching complexes are two-dimensional and Buchsbaum. A few sthr families too!

The end

Thanks for your attention!

M_{7}

