Matching Complexes of Polygonal Tilings

Margaret Bayer
University of Kansas
bayer@ku.edu

Marija Jelić Milutinović University of Belgrade marijaj@matf.bg.ac.rs

Julianne Vega
Kennesaw State University jvega30@kennesaw.edu

This material is based upon work supported by the National Science Foundation under Grant No. DMS- 1440140 while the author participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the summer of 2021.

Honeycomb Graphs

A $k \times m \times n$ honeycomb graph, denoted $H_{k \times m \times n}$ is a hexagonal tiling whose whose congruent, opposite sides consist of k, m, and n hexagons respectively with $k, m, n \in \mathbb{Z}_{\geq 1}$

Matching Complexes
The matching complex of a graph is a simplicial complex whose faces are given by matchings in the graph (ie. collections of disjoint edge sets).

- ('05 Jonsson) In unpublished manuscript: hopotopical depth and shifted connectivity for $m \times n$ grid graphs .
- ('17 Braun and Hough) Homological bounds on $2 \times n$ grid graph
- ('19 Matsushita) Showed $n \times 2$ grid graph homotopy equivalent to wedge of spheres
- ('19 Jelić et. al)
- Connectivity bounds for line of polygons
- When $n \equiv 1(\bmod 3)$ and $t \geq 2$, the matching complex of t $2 n$-gons is homotopy equivalent to a wedge of t spheres of dimension $\frac{2 n t+t}{3}-t$.
- Connectivity bounds for $2 \times 1 \times n$ honeycomb graphs
- ('19 Matsushita) Determined the homotopy type when $n \equiv 0$ and $n \equiv 2(\bmod 3)$ for lines of polygons is a wedge of spheres and showed the connectivity bounds were tight for $n \equiv 0$ but not when $n \equiv 2(\bmod 3)$

A perfect matching is a matching of a graph G in which every vertex of G is incident to an edge in the matching. The perfect matching complex of a graph G is a simplicial complex whose faces are all subsets of perfect matchings, note that this is a subcomplex of the matching complex of G.

Maximal Perfect Matching $M\left(H_{x|x| \alpha)}\right) \simeq 5^{\circ}$

$$
\frac{\text { ximal Perfect Matathing }}{\{a, c,\}\{f, b, d\}}
$$

Plane Partitions

A plane partition is a 2-dimensional array of integers that are non-increasing moving from left to right and top to bottom.

22
10

22 10

22
10

Discrete Morse Matchings

- An acyclic partial matching in a poset P is a subset $\mu \in P \times P$ such that:
- $(a, b) \in \mu$ implies b covers a, denoted $a=d(b)$ and $b=u(a)$
- each $a \in P$ belongs to at most one element is μ.
- there does not exist a cycle

$$
b_{1}>d\left(b_{1}\right)<b_{2}>d\left(b_{2}\right)<\cdots<b_{n}>d\left(b_{n}\right)<b_{1}
$$

where $n \geq 2$ and all $b_{i} \in P$ distinct.
Unmatched elements of an acyclic partial matching μ on P are called critical.

Theorem

Let Δ be a polyhedral cell complex, and μ be an acylic partial pairing on the face poset of Δ. Let c_{i} denote the number of critical cells of dimension i of Δ. Then Δ is homotopy equivalent to a cell complex Δ_{c} with c_{i} cells of dimension i for each $i \geq 0$, plus a single 0 -dimension cell in the case where the empty set is paired in the matching.

Theorem (Bayer,Jelić Multinović, V.)

Let $H_{1 \times 2 \times n}$ be the honeycomb graph of dimension $1 \times 2 \times n$, $n \in \mathbb{N}, n \geq 2$. Then

$$
\mathcal{M}_{p}\left(H_{1 \times 2 \times n}\right) \simeq S^{n-1}
$$

Theorem

Let $H_{1 \times 1 \times n}$ be the honeycomb graph of dimension $1 \times 1 \times n$, $n \in \mathbb{N}, n \geq 2$. Then $\mathcal{M}_{p}\left(H_{1 \times 2 \times n}\right)$ is contractible.

Define the discrete Morse Matching:

1 Match on x - pairs away all subposets corresponding with plane partitions not equal to $(0,0)$.
2 Match on y - Since y is in all perfect matchings except the one corresponding to the (n, n, \ldots, n) plane partition, the intersection of $(0,0, \ldots, 0)$ and (n, n, \ldots, n) along with y remains.

Notice that any subset of $\left\{a_{1}, a_{2}, a_{3}\right\}$ is contained in a maximal perfect matching.

So the only critical cell that remains is $\left\{a_{1}, a_{2}, a_{3}\right\} \cup\{y\}$ and for general n we have one critical cell $\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\} \cup\{y\}$.

In the case of $1 \times 1 \times n$ honeycomb graphs the intersection between (0) and (n) is empty.
Notice that once the height is determined all of the other edges are predetermined.
In matching on y we pair away all unmatched faces.

$1 \times m \times n$ honeycomb graphs

Theorem (Bayer,Jelić Multinović, V.)

Let $H_{1 \times m \times n}$ be the honeycomb graph of dimension $1 \times m \times n$, $m, n \in \mathbb{N}$, and $m, n \geq 3$. Then the perfect matching complex $\mathcal{M}_{p}\left(H_{1 \times m \times n}\right)$ is contractible.

Define a discrete Morse Matching:

1 Match on x - pairs away all subposets corresponding with plane partitions not equal to $(0,0, \ldots, 0)$.
2 Match on y - The remaining cells are contained in $((0,0, \ldots, 0) \cap(n, n \ldots, n)) \cup\{y\}$ and contain $\{y\}$.

$$
\left(h_{1}, h_{2}, h_{3}, h_{4}\right)
$$

We make one final matching on the edge c_{1}.

Claim: This will pair away all unmatched cells.

$1 \times m \times n$ honeycomb graphs

- We show that $\sigma \ni c_{1}$ is matched if and only if $\sigma \backslash c_{1}$ is matched.
- We show that $\sigma \ni c_{1}$ is matched if and only if $\sigma \backslash c_{1}$ is matched.
- Recall that for a face τ to be previously matched that means that τ is contained in a maximal perfect matching.
- We show that $\sigma \ni c_{1}$ is matched if and only if $\sigma \backslash c_{1}$ is matched.
- Recall that for a face τ to be previously matched that means that τ is contained in a maximal perfect matching.
- The forward direction is clear: If $\sigma \ni c_{1}$ is contained in a maximal perfect matching, then $\sigma \backslash c_{1}$ is contained in a maximal perfect matching.

Suppose now that $\sigma \nexists c_{1}$ has been previously matched. Let $\left(h_{1}, h_{2}, \ldots, h_{m}\right)$ denote the heights of columns $1,2, \ldots, m$. Case $1 h_{m} \in\{0,1\}$ and $h_{m-1} \geq 2$:

More generally, if $\sigma \subset\left(h_{1}, \ldots, h_{m-1}, 1\right)$ and we see $\sigma \cup\left\{c_{1}\right\} \subset\left(h_{1}, h_{2}, \ldots, 2\right)$.

Case $2 h_{m} \in\{0,1\}$ and $h_{m-1}=1$ and $h_{m-2} \geq 1$:

More generally, $\sigma \subset\left(h_{1}, \ldots, h_{m-2}, 1,0\right)$ and we see $\sigma \cup\left\{c_{1}\right\} \subset\left(h_{1}, h_{2}, \ldots, h_{m-2}, 0,0\right)$.
B. Braun and W. Hough (2017).

Matching and Independence complexes related to small grids.
Electon. J. Combin. 24(4):Paper 4.18,20, 2017.
M. Jelić Milutinović, H. Jenne, A. McDonough, J. Vega (2019).

Matching Complexes of trees and applications of the matching tree algorithm.
arxiv: 1905.10560
J. Jonsson (2005).

Matching complexes on grids.
unpublished available at http://www.math.kth.se/ jakobj/doc/thesis/grid/pdf.
J. Jonsson (2008).

Simplicil complexes of graphs
Volume 1928 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008.
T. Matsushita (2019).

Matching complexes of polygonal line tilings.
arXiv: 1910.00186 [math.CO]
T. Matsushita (2019).

Matching complexes of small grids.
Electron. J. Combin., 26(3): Paper 3.1,8, 2019.
R. Stanley (1985).

Symmetries of Plane Partitions.
J. of Combin Theory, Series A, 43, 103-113, 1985.

