Matching Complexes of Polygonal Tilings

Margaret Bayer Marija Jelić Milutinović University of Kansas University of Belgrade bayer@ku.edu marijaj@matf.bg.ac.rs Julianne Vega Kennesaw State University jvega30@kennesaw.edu

This material is based upon work supported by the National Science Foundation under Grant No. DMS- 1440140 while the author participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the summer of 2021.

Honeycomb Graphs

A $k \times m \times n$ honeycomb graph, denoted $H_{k \times m \times n}$ is a hexagonal tiling whose whose congruent, opposite sides consist of k, m, and n hexagons respectively with $k, m, n \in \mathbb{Z}_{\geq 1}$

Matching Complexes

The **matching complex** of a graph is a simplicial complex whose faces are given by matchings in the graph (i.e. collections of disjoint edge sets).

Background

- ('05 Jonsson) In unpublished manuscript: hopotopical depth and shifted connectivity for $m \times n$ grid graphs .
- ('17 Braun and Hough) Homological bounds on 2 × n grid graph
- ('19 Matsushita) Showed *n* × 2 grid graph homotopy equivalent to wedge of spheres
- ('19 Jelić et. al)
 - Connectivity bounds for line of polygons
 - When $n \equiv 1 \pmod{3}$ and $t \ge 2$, the matching complex of t 2*n*-gons is homotopy equivalent to a wedge of t spheres of dimension $\frac{2nt+t}{3} t$.
 - Connectivity bounds for $2 \times 1 \times n$ honeycomb graphs
- ('19 Matsushita) Determined the homotopy type when $n \equiv 0$ and $n \equiv 2 \pmod{3}$ for lines of polygons is a wedge of spheres and showed the connectivity bounds were tight for $n \equiv 0$ but not when $n \equiv 2 \pmod{3}$

Perfect Matching Complex

A **perfect matching** is a matching of a graph G in which every vertex of G is incident to an edge in the matching. The **perfect matching complex** of a graph G is a simplicial complex whose faces are all subsets of perfect matchings, note that this is a subcomplex of the matching complex of G.

Plane Partitions

A **plane partition** is a 2-dimensional array of integers that are non-increasing moving from left to right and top to bottom.

Plane Partitions and Perfect Matchings

Discrete Morse Matchings

• An acyclic partial matching in a poset *P* is a subset $\mu \in P \times P$ such that:

- $(a,b) \in \mu$ implies b covers a, denoted a = d(b) and b = u(a)
- each $a \in P$ belongs to at most one element is μ .
- there does not exist a cycle

$$b_1 > d(b_1) < b_2 > d(b_2) < \cdots < b_n > d(b_n) < b_1$$

where $n \ge 2$ and all $b_i \in P$ distinct.

Unmatched elements of an acyclic partial matching μ on P are called **critical**.

Theorem

Let Δ be a polyhedral cell complex, and μ be an acylic partial pairing on the face poset of Δ . Let c_i denote the number of critical cells of dimension i of Δ . Then Δ is homotopy equivalent to a cell complex Δ_c with c_i cells of dimension i for each $i \ge 0$, plus a single 0-dimension cell in the case where the empty set is paired in the matching.

Theorem (Bayer, Jelić Multinović, V.)

Let $H_{1\times 2\times n}$ be the honeycomb graph of dimension $1\times 2\times n$, $n\in\mathbb{N}$, $n\geq 2$. Then

$$\mathcal{M}_p(\mathcal{H}_{1 imes 2 imes n})\simeq S^{n-1}$$

Theorem

Let $H_{1 \times 1 \times n}$ be the honeycomb graph of dimension $1 \times 1 \times n$, $n \in \mathbb{N}$, $n \geq 2$. Then $\mathcal{M}_p(H_{1 \times 2 \times n})$ is contractible.

Define the discrete Morse Matching:

- Match on x pairs away all subposets corresponding with plane partitions not equal to (0,0).
- **2** Match on y Since y is in all perfect matchings except the one corresponding to the (n, n, ..., n) plane partition, the intersection of (0, 0, ..., 0) and (n, n, ..., n) along with y remains.

Notice that any subset of $\{a_1, a_2, a_3\}$ is contained in a maximal perfect matching.

So the only critical cell that remains is $\{a_1, a_2, a_3\} \cup \{y\}$ and for general *n* we have one critical cell $\{a_1, a_2, \ldots, a_{n-1}\} \cup \{y\}$.

In the case of $1 \times 1 \times n$ honeycomb graphs the intersection between (0) and (*n*) is empty.

Notice that once the height is determined all of the other edges are predetermined.

In matching on y we pair away all unmatched faces.

Theorem (Bayer, Jelić Multinović, V.)

Let $H_{1 \times m \times n}$ be the honeycomb graph of dimension $1 \times m \times n$, $m, n \in \mathbb{N}$, and $m, n \ge 3$. Then the perfect matching complex $\mathcal{M}_p(H_{1 \times m \times n})$ is contractible.

Define a discrete Morse Matching:

- **1** Match on x pairs away all subposets corresponding with plane partitions not equal to (0, 0, ..., 0).
- 2 Match on y The remaining cells are contained in $((0,0,\ldots,0) \cap (n,n\ldots,n)) \cup \{y\}$ and contain $\{y\}$.

We make one final matching on the edge c_1 .

Claim: This will pair away all unmatched cells.

• We show that $\sigma \ni c_1$ is matched if and only if $\sigma \setminus c_1$ is matched.

• We show that $\sigma \ni c_1$ is matched if and only if $\sigma \setminus c_1$ is matched.

Recall that for a face \(\tau\) to be previously matched that means that \(\tau\) is contained in a maximal perfect matching.

• We show that $\sigma \ni c_1$ is matched if and only if $\sigma \setminus c_1$ is matched.

Recall that for a face τ to be previously matched that means that τ is contained in a maximal perfect matching.

The forward direction is clear: If σ∋c₁ is contained in a maximal perfect matching, then σ \ c₁ is contained in a maximal perfect matching.

Suppose now that $\sigma \not\supseteq c_1$ has been previously matched. Let (h_1, h_2, \ldots, h_m) denote the heights of columns $1, 2, \ldots, m$. **Case 1** $h_m \in \{0, 1\}$ and $h_{m-1} \ge 2$:

More generally, if $\sigma \subset (h_1, \ldots, h_{m-1}, 1)$ and we see $\sigma \cup \{c_1\} \subset (h_1, h_2, \ldots, 2)$.

18/20

Case 2 $h_m \in \{0,1\}$ and $h_{m-1} = 1$ and $h_{m-2} \ge 1$:

More generally, $\sigma \subset (h_1, \ldots, h_{m-2}, 1, 0)$ and we see $\sigma \cup \{c_1\} \subset (h_1, h_2, \ldots, h_{m-2}, 0, 0)$.

19/20

References

B. Braun and W. Hough (2017).

Matching and Independence complexes related to small grids. *Electon. J. Combin.* 24(4):Paper 4.18,20, 2017.

M. Jelić Milutinović, H. Jenne, A. McDonough, J. Vega (2019).

Matching Complexes of trees and applications of the matching tree algorithm. arxiv: 1905.10560

J. Jonsson (2005).

Matching complexes on grids.

unpublished available at http://www.math.kth.se/ jakobj/doc/thesis/grid/pdf.

J. Jonsson (2008).

Simplicil complexes of graphs Volume 1928 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008.

T. Matsushita (2019).

Matching complexes of polygonal line tilings. arXiv: 1910.00186 [math.CO]

T. Matsushita (2019).

Matching complexes of small grids. Electron. J. Combin., 26(3): Paper 3.1,8, 2019.

R. Stanley (1985).

Symmetries of Plane Partitions. J. of Combin Theory. Series A. 43, 103-113, 1985.