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Let [n] ={1,2,...,n}. A partition of [n] into k blocks is
p = Bi/.../Bk were the B; are nonempty sets with [n] = W;B;
and B; # () for all i. The Stirling numbers of the second kind are

S(n,k) = #{p| p is a partition of [n] into k blocks}.

Ex. If n = 3 then

k 1 2 3
p | 123]1/23, 12/3, 13/2 | 1/2/3
SG.K)| 1 3 1

Let &, denote the symmetric group of permutations 7 of [n]. The
Stirling numbers of the first kind are

s(n, k) = (=1)""%#{n | 7 € &, has k disjoint cycles}.
Ex. If n =3 then

k 1 2 3
™ 1(1,2,3), (1,3,2) | (1)(2,3), (1,2)(3), (1,3)(2) | (1)(2)(3)
s(3, k) 2 -3 1
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Let x, = {x1,...,xn} be a set of commuting variables. The degree

of a monomial m = x{“ ... xk is degm = Y. k;. Define complete

homogeneous symmetric fuctions by

hi(xn) = Z m.
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Let x, = {x1,...,xn} be a set of commuting variables. The degree
of a monomial m = x{“ ... xk is degm = Y. k;. Define complete

homogeneous symmetric fuctions by

hi(xn) = Z m.

deg m=k
Ex.
k [ 1 | 2 | 3
hs—k(xx) ha(x1) = X12 hi(x2) = x1 + x2 | ho(x3) =1
hs_k(1,..., k) 1 3 1
Proposition

We have S(n, k) = h,_(1,2,..., k).
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Define elementary symmetric functions by
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Ex.
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(—1)3*e3_1(x2) || e2(x2) = x1x2 | —e1(x2) = —(x1 + x2) | eo(x2) =
(—1)3ke3 1 (1,2) 2 -3 1




Define elementary symmetric functions by

ek(xn) = Z m.

deg m=k,m square free

Ex.

k [ 1 | 2 | 3
(—1)3*ke3,k(xQ) e(x2) = x1x2 | —e1(x2) = —(x1 + x2) | eo(x2) =
(—1)3ke3 1 (1,2) 2 -3 1

Proposition

We have s(n, k) = (—1)""*e,_«(1,2,...,n—1).
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Let P be a finite poset with a unique minimum element 0, and a
rank function where for x € P

rk x = length of any maximal 0—x chain.
Let
M, = set of partitions p of [n] ordered by refinement.

Ex. if n = 3 then
123

My = 12/3 1/23

1/2/3

So ifp:Bl/.../Bkel'I,,then

rkp=n—k.
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The Whitney numbers of the 2nd kind for P are
WP, k)= ) 1=4#{xeP|rkx=k}.
rk x=k
The Mébius function of P is defined by 11(0) = 1 and for x > 0
p(x) ==> ply) <= Y uly) =05
y<x y<x
The Whiney numbers of the 1st kind for P are

w(P k)= Y u(x).

rk x=k
Ex. W(M3,k): 1 123 2 w(Ms, k) : 2

3 (D12/3 €D »1/23C) -3

1 1/2/3@ 1

Proposition
We have W (M ,, k) = S(n,n— k) and w(l,, k) = s(n,n—k). O
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A hyperplane in C" is a subspace H with dmH =n—-1. A

hyperplane arrangement is a finite set A = {Hs,..., Hx} of

hyperplanes. The braid arrangement in C" is
Brp={xi=x;|1<i<j<n}.

The intersection lattice L(.A) of an arrangement is all subspaces
W C C" which can be obtained as the intersection of some of the
hyperplanes in A ordered by reverse inclusion.

Ex. We have Brs = {x1 = xp, x1 = x3, X2 = x3}, with lattice

X1 = X2 = X3 123

X1 = X2

I

12/3

c3 1/2/3
Proposition
We have L(Br,) = I, as posets. O
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A pseudoreflection is a linear map M : C" — C" which fixes a
hyperplane and is of finite order. A complex reflection group G is a
group generated by pseudoreflections. Call W irreducible if its only
G-invariant subspaces are C" and the origin, and n is called G's
rank. Shephard and Todd classified the finite irreducible complex
reflection groups into 3 infinite families and 34 exceptionals.

G(m, p,n) := group of all n x n complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero
entry, say (; in row /.

2. Each (; is a mth root of unity.
3. We have p|m and ((1---¢n)™P = 1.

Ex. If
0 —/ 0 0 —/ 0 a a
M = i 0 0 then i 0 O a | = | ia
0 01 0 01 b b

So M fixes xo = ix; and M? = I. Also M € G(4, p,3) for any pl|4.
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Given a finite complex reflection group G we let

A(G) = {H | H a fixed hyperplane of a pseudoreflection in G},
L(G) = intersection lattice of A(G).

If G is irreducible of rank n then it's Stirling numbers of the first
and second kinds are, respectively,

s(G,k) = w(L(G),n— k) and S(G,k) = W(L(G),n— k).
Theorem (Orlik-Solomon, 1980)

If G is a finite, irreducible complex reflection group with
coexponents ej, ..., e, then

S(G. k) = (~1)" *enil(ef. ... €]).
Theorem (SSS)
Let G = G(m, p,n).

(G k) = ho—k(L,m+1,....km+1):= h(m,k,n) forp<m,
"2 h(mykyn) — nhy_k—1(m,2m, ... km) for p = m.
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