Stirling numbers for complex reflection groups

Bruce Sagan
Michigan State University
www.math.msu.edu/~sagan
joint work with Robin Sulzgruber and Joshua Swanson

AMS Meeting, Creighton University
October 9-10, 2021

Ordinary Stirling numbers

Complex reflection groups

Outline

Ordinary Stirling numbers

Complex reflection groups

Let $[n]=\{1,2, \ldots, n\}$.

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i.

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i. The Stirling numbers of the second kind are $S(n, k)=\#\{\rho \mid \rho$ is a partition of $[n]$ into k blocks $\}$.

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i. The Stirling numbers of the second kind are

$$
S(n, k)=\#\{\rho \mid \rho \text { is a partition of }[n] \text { into } k \text { blocks }\} .
$$

Ex. If $n=3$ then

k	1	2	3
ρ	123	$1 / 23,12 / 3,13 / 2$	$1 / 2 / 3$
$S(3, k)$	1	3	1

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i. The Stirling numbers of the second kind are $S(n, k)=\#\{\rho \mid \rho$ is a partition of $[n]$ into k blocks $\}$.
Ex. If $n=3$ then

k	1	2	3
ρ	123	$1 / 23,12 / 3,13 / 2$	$1 / 2 / 3$
$S(3, k)$	1	3	1

Let \mathfrak{S}_{n} denote the symmetric group of permutations π of $[n]$.

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i. The Stirling numbers of the second kind are $S(n, k)=\#\{\rho \mid \rho$ is a partition of $[n]$ into k blocks $\}$.
Ex. If $n=3$ then

k	1	2	3
ρ	123	$1 / 23,12 / 3,13 / 2$	$1 / 2 / 3$
$S(3, k)$	1	3	1

Let \mathfrak{S}_{n} denote the symmetric group of permutations π of $[n]$. The Stirling numbers of the first kind are

$$
s(n, k)=(-1)^{n-k} \#\left\{\pi \mid \pi \in \mathfrak{S}_{n} \text { has } k \text { disjoint cycles }\right\} .
$$

Let $[n]=\{1,2, \ldots, n\}$. A partition of $[n]$ into k blocks is $\rho=B_{1} / \ldots / B_{k}$ were the B_{i} are nonempty sets with $[n]=\uplus_{i} B_{i}$ and $B_{i} \neq \emptyset$ for all i. The Stirling numbers of the second kind are $S(n, k)=\#\{\rho \mid \rho$ is a partition of $[n]$ into k blocks $\}$.
Ex. If $n=3$ then

k	1	2	3
ρ	123	$1 / 23,12 / 3,13 / 2$	$1 / 2 / 3$
$S(3, k)$	1	3	1

Let \mathfrak{S}_{n} denote the symmetric group of permutations π of $[n]$. The Stirling numbers of the first kind are

$$
s(n, k)=(-1)^{n-k} \#\left\{\pi \mid \pi \in \mathfrak{S}_{n} \text { has } k \text { disjoint cycles }\right\}
$$

Ex. If $n=3$ then

k	1	2	3
π	$(1,2,3),(1,3,2)$	$(1)(2,3),(1,2)(3),(1,3)(2)$	$(1)(2)(3)$
$s(3, k)$	2	-3	1

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables.

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables. The degree of a monomial $m=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $\operatorname{deg} m=\sum_{i} k_{i}$.

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables. The degree of a monomial $m=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $\operatorname{deg} m=\sum_{i} k_{i}$. Define complete homogeneous symmetric fuctions by

$$
h_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k} m
$$

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables. The degree of a monomial $m=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $\operatorname{deg} m=\sum_{i} k_{i}$. Define complete homogeneous symmetric fuctions by

$$
h_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k} m
$$

Ex.

k	1	2	3
$h_{3-k}\left(\mathbf{x}_{k}\right)$	$h_{2}\left(\mathbf{x}_{1}\right)=x_{1}^{2}$	$h_{1}\left(\mathbf{x}_{2}\right)=x_{1}+x_{2}$	$h_{0}\left(\mathbf{x}_{3}\right)=1$

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables. The degree of a monomial $m=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $\operatorname{deg} m=\sum_{i} k_{i}$. Define complete homogeneous symmetric fuctions by

$$
h_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k} m
$$

Ex.

k	1	2	3
$h_{3-k}\left(\mathbf{x}_{k}\right)$	$h_{2}\left(\mathbf{x}_{1}\right)=x_{1}^{2}$	$h_{1}\left(\mathbf{x}_{2}\right)=x_{1}+x_{2}$	$h_{0}\left(\mathbf{x}_{3}\right)=1$
$h_{3-k}(1, \ldots, k)$	1	3	1

Let $\mathbf{x}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of commuting variables. The degree of a monomial $m=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $\operatorname{deg} m=\sum_{i} k_{i}$. Define complete homogeneous symmetric fuctions by

$$
h_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k} m
$$

Ex.

k	1	2	3
$h_{3-k}\left(\mathbf{x}_{k}\right)$	$h_{2}\left(\mathbf{x}_{1}\right)=x_{1}^{2}$	$h_{1}\left(\mathbf{x}_{2}\right)=x_{1}+x_{2}$	$h_{0}\left(\mathbf{x}_{3}\right)=1$
$h_{3-k}(1, \ldots, k)$	1	3	1

Proposition

We have $S(n, k)=h_{n-k}(1,2, \ldots, k)$.

Define elementary symmetric functions by

$$
e_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k, m \text { square free }} m
$$

Define elementary symmetric functions by

$$
e_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k, m \text { square free }} m
$$

Ex.

k	1	2	3
$(-1)^{3-k} e_{3-k}\left(\mathbf{x}_{2}\right)$	$e_{2}\left(\mathbf{x}_{2}\right)=x_{1} x_{2}$	$-e_{1}\left(\mathbf{x}_{2}\right)=-\left(x_{1}+x_{2}\right)$	$e_{0}\left(\mathbf{x}_{2}\right)=1$

Define elementary symmetric functions by

$$
e_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k, m \text { square free }} m
$$

Ex.

k	1	2	3
$(-1)^{3-k} e_{3-k}\left(\mathbf{x}_{2}\right)$	$e_{2}\left(\mathbf{x}_{2}\right)=x_{1} x_{2}$	$-e_{1}\left(\mathbf{x}_{2}\right)=-\left(x_{1}+x_{2}\right)$	$e_{0}\left(\mathbf{x}_{2}\right)=1$
$(-1)^{3-k} e_{3-k}(1,2)$	2	-3	1

Define elementary symmetric functions by

$$
e_{k}\left(\mathbf{x}_{n}\right)=\sum_{\operatorname{deg} m=k, m \text { square free }} m
$$

Ex.

k	1	2	3
$(-1)^{3-k} e_{3-k}\left(\mathbf{x}_{2}\right)$	$e_{2}\left(\mathbf{x}_{2}\right)=x_{1} x_{2}$	$-e_{1}\left(\mathbf{x}_{2}\right)=-\left(x_{1}+x_{2}\right)$	$e_{0}\left(\mathbf{x}_{2}\right)=1$
$(-1)^{3-k} e_{3-k}(1,2)$	2	-3	1

Proposition
We have $s(n, k)=(-1)^{n-k} e_{n-k}(1,2, \ldots, n-1)$.

Let P be a finite poset with a unique minimum element $\hat{0}$,

Let P be a finite poset with a unique minimum element $\hat{0}$, and a rank function where for $x \in P$
rk $x=$ length of any maximal $0 \hat{0}-x$ chain.

Let P be a finite poset with a unique minimum element $\hat{0}$, and a rank function where for $x \in P$

$$
\text { rk } x=\text { length of any maximal } 0 \hat{-}-x \text { chain. }
$$

Let

$$
\Pi_{n}=\text { set of partitions } \rho \text { of }[n] \text { ordered by refinement. }
$$

Let P be a finite poset with a unique minimum element $\hat{0}$, and a rank function where for $x \in P$

$$
\text { rk } x=\text { length of any maximal } 0-x \text { chain. }
$$

Let

$$
\Pi_{n}=\text { set of partitions } \rho \text { of }[n] \text { ordered by refinement. }
$$

Ex. if $n=3$ then

Let P be a finite poset with a unique minimum element $\hat{0}$, and a rank function where for $x \in P$
$\operatorname{rk} x=$ length of any maximal $0 \hat{-}-x$ chain.
Let

$$
\Pi_{n}=\text { set of partitions } \rho \text { of }[n] \text { ordered by refinement. }
$$

Ex. if $n=3$ then

So if $\rho=B_{1} / \ldots / B_{k} \in \Pi_{n}$ then

$$
\operatorname{rk} \rho=n-k
$$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1
$$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Whitney numbers of the 2 nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the $2 n d$ kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y)
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

123

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \mathrm{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, 0} .
$$

The Whiney numbers of the 1st kind for P are

$$
w(P, k)=\sum_{\mathrm{rk} x=k} \mu(x)
$$

Ex. $W\left(\Pi_{3}, k\right): 1$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, \hat{0}} .
$$

The Whiney numbers of the 1st kind for P are

$$
w(P, k)=\sum_{\mathrm{rk} x=k} \mu(x)
$$

Ex. $W\left(\Pi_{3}, k\right): 1$
$-12 / 3<13 / 2 \cdot\left(\Pi_{3}, k\right): 2$

The Whitney numbers of the 2nd kind for P are

$$
W(P, k)=\sum_{\mathrm{rk} x=k} 1=\#\{x \in P \mid \operatorname{rk} x=k\} .
$$

The Möbius function of P is defined by $\mu(\hat{0})=1$ and for $x>\hat{0}$

$$
\mu(x)=-\sum_{y<x} \mu(y) \Longleftrightarrow \sum_{y \leq x} \mu(y)=\delta_{x, \hat{0}} .
$$

The Whiney numbers of the 1st kind for P are

$$
w(P, k)=\sum_{\mathrm{rk} x=k} \mu(x)
$$

Ex. $W\left(\Pi_{3}, k\right): 1$
123 (2) $w\left(\Pi_{3}, k\right):$

1

Proposition
We have $W\left(\Pi_{n}, k\right)=S(n, n-k)$ and $w\left(\Pi_{n}, k\right)=s(n, n-k)$.

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$.

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes.

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Ex. We have $B r_{3}=\left\{x_{1}=x_{2}, x_{1}=x_{3}, x_{2}=x_{3}\right\}$,

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

The intersection lattice $L(\mathcal{A})$ of an arrangement is all subspaces $W \subseteq \mathbb{C}^{n}$ which can be obtained as the intersection of some of the hyperplanes in \mathcal{A} ordered by reverse inclusion.
Ex. We have $B r_{3}=\left\{x_{1}=x_{2}, x_{1}=x_{3}, x_{2}=x_{3}\right\}$,

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

The intersection lattice $L(\mathcal{A})$ of an arrangement is all subspaces $W \subseteq \mathbb{C}^{n}$ which can be obtained as the intersection of some of the hyperplanes in \mathcal{A} ordered by reverse inclusion.
Ex. We have $B r_{3}=\left\{x_{1}=x_{2}, x_{1}=x_{3}, x_{2}=x_{3}\right\}$, with lattice

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

The intersection lattice $L(\mathcal{A})$ of an arrangement is all subspaces $W \subseteq \mathbb{C}^{n}$ which can be obtained as the intersection of some of the hyperplanes in \mathcal{A} ordered by reverse inclusion.
Ex. We have $B r_{3}=\left\{x_{1}=x_{2}, x_{1}=x_{3}, x_{2}=x_{3}\right\}$, with lattice

A hyperplane in \mathbb{C}^{n} is a subspace H with $\operatorname{dim} H=n-1$. A hyperplane arrangement is a finite set $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ of hyperplanes. The braid arrangement in \mathbb{C}^{n} is

$$
B r_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\} .
$$

The intersection lattice $L(\mathcal{A})$ of an arrangement is all subspaces $W \subseteq \mathbb{C}^{n}$ which can be obtained as the intersection of some of the hyperplanes in \mathcal{A} ordered by reverse inclusion.
Ex. We have $B r_{3}=\left\{x_{1}=x_{2}, x_{1}=x_{3}, x_{2}=x_{3}\right\}$, with lattice

Proposition
We have $L\left(B r_{n}\right) \cong \Pi_{n}$ as posets.

Outline

Ordinary Stirling numbers

Complex reflection groups

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then } \quad\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=l$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.
$G(m, p, n):=$ group of all $n \times n$ complex matrices M satisfying

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=l$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.
$G(m, p, n):=$ group of all $n \times n$ complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero entry, say ζ_{i} in row i.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.
$G(m, p, n):=$ group of all $n \times n$ complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero entry, say ζ_{i} in row i.
2. Each ζ_{i} is a m th root of unity.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right] .
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=l$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.
$G(m, p, n):=$ group of all $n \times n$ complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero entry, say ζ_{i} in row i.
2. Each ζ_{i} is a m th root of unity.
3. We have $p \mid m$ and $\left(\zeta_{1} \cdots \zeta_{n}\right)^{m / p}=1$.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$.

A pseudoreflection is a linear map $M: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ which fixes a hyperplane and is of finite order. A complex reflection group G is a group generated by pseudoreflections. Call W irreducible if its only G-invariant subspaces are \mathbb{C}^{n} and the origin, and n is called G 's rank. Shephard and Todd classified the finite irreducible complex reflection groups into 3 infinite families and 34 exceptionals.
$G(m, p, n):=$ group of all $n \times n$ complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero entry, say ζ_{i} in row i.
2. Each ζ_{i} is a m th root of unity.
3. We have $p \mid m$ and $\left(\zeta_{1} \cdots \zeta_{n}\right)^{m / p}=1$.

Ex. If

$$
M=\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { then }\left[\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
i a \\
b
\end{array}\right]
$$

So M fixes $x_{2}=i x_{1}$ and $M^{2}=I$. Also $M \in G(4, p, 3)$ for any $p \mid 4$.

Given a finite complex reflection group G we let

Given a finite complex reflection group G we let
$\mathcal{A}(G)=\{H \mid H$ a fixed hyperplane of a pseudoreflection in $G\}$, $L(G)=$ intersection lattice of $\mathcal{A}(G)$.

Given a finite complex reflection group G we let
$\mathcal{A}(G)=\{H \mid H$ a fixed hyperplane of a pseudoreflection in $G\}$, $L(G)=$ intersection lattice of $\mathcal{A}(G)$.

If G is irreducible of rank n then it's Stirling numbers of the first and second kinds are, respectively,

$$
s(G, k)=w(L(G), n-k)
$$

Given a finite complex reflection group G we let
$\mathcal{A}(G)=\{H \mid H$ a fixed hyperplane of a pseudoreflection in $G\}$, $L(G)=$ intersection lattice of $\mathcal{A}(G)$.
If G is irreducible of rank n then it's Stirling numbers of the first and second kinds are, respectively,

$$
s(G, k)=w(L(G), n-k) \quad \text { and } \quad S(G, k)=W(L(G), n-k)
$$

Given a finite complex reflection group G we let

$$
\begin{aligned}
\mathcal{A}(G) & =\{H \mid H \text { a fixed hyperplane of a pseudoreflection in } G\} \\
L(G) & =\text { intersection lattice of } \mathcal{A}(G)
\end{aligned}
$$

If G is irreducible of rank n then it's Stirling numbers of the first and second kinds are, respectively,

$$
s(G, k)=w(L(G), n-k) \quad \text { and } \quad S(G, k)=W(L(G), n-k)
$$

Theorem (Orlik-Solomon, 1980)
If G is a finite, irreducible complex reflection group with coexponents $e_{1}^{*}, \ldots, e_{n}^{*}$ then

$$
s(G, k)=(-1)^{n-k} e_{n-k}\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)
$$

Given a finite complex reflection group G we let

$$
\begin{aligned}
\mathcal{A}(G) & =\{H \mid H \text { a fixed hyperplane of a pseudoreflection in } G\}, \\
L(G) & =\text { intersection lattice of } \mathcal{A}(G) .
\end{aligned}
$$

If G is irreducible of rank n then it's Stirling numbers of the first and second kinds are, respectively,

$$
s(G, k)=w(L(G), n-k) \quad \text { and } \quad S(G, k)=W(L(G), n-k)
$$

Theorem (Orlik-Solomon, 1980)
If G is a finite, irreducible complex reflection group with coexponents $e_{1}^{*}, \ldots, e_{n}^{*}$ then

$$
s(G, k)=(-1)^{n-k} e_{n-k}\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)
$$

Theorem (SSS)
Let $G=G(m, p, n)$.
$S(G, k)= \begin{cases}h_{n-k}(1, m+1, \ldots, k m+1):=h(m, k, n) & \text { for } p<m, \\ h(m, k, n)-n h_{n-k-1}(m, 2 m, \ldots, k m) & \text { for } p=m .\end{cases}$

THANKS FOR LISTENING!

