A Family of Convex Sets in the Plane with the (4,3)-Property can be Pierced by 9 Points

Daniel McGinnis

Iowa State University

Helly's Theorem

Daniel McGinnis

æ

< □ > < □ > < □ > < □ > < □ >

Helly's Theorem

Definition

A family of sets is said to be pierced by a set S if each set in the family contains a point in S.

Helly's Theorem

Definition

A family of sets is said to be pierced by a set S if each set in the family contains a point in S.

Theorem (Helly's Theorem (1913))

Let \mathfrak{F} be a finite family of compact, convex sets in \mathbb{R}^d such that every d+1 sets in \mathfrak{F} have a common point. Then \mathfrak{F} can be pierced by 1 point.

(p,q)-property

Definition

A family ${\mathcal F}$ satisfies the (p,q)-property if for every p sets of ${\mathcal F}\text{, }q$ of them have a common point.

3

< ∃⇒

$(p,q)\text{-}\mathsf{property}$

Definition

A family ${\mathcal F}$ satisfies the (p,q)-property if for every p sets of ${\mathcal F},\,q$ of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \ge q \ge d+1$. Does there exist a constant $c_d(p,q)$ such that every finite family \mathfrak{F} of compact, convex sets in \mathbb{R}^d satisfying the (p,q)-property can be pierced by $c_d(p,q)$ points?

(p,q)-property

Definition

A family \mathcal{F} satisfies the (p,q)-property if for every p sets of \mathcal{F} , q of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \ge q \ge d+1$. Does there exist a constant $c_d(p,q)$ such that every finite family \mathcal{F} of compact, convex sets in \mathbb{R}^d satisfying the (p,q)-property can be pierced by $c_d(p,q)$ points?

Theorem (N. Alon, D. Kleitman (1992))

```
There is such a constant c_d(p,q).
```

$(p,q)\text{-}\mathsf{property}$

Definition

A family ${\mathcal F}$ satisfies the (p,q)-property if for every p sets of ${\mathcal F},\,q$ of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \ge q \ge d+1$. Does there exist a constant $c_d(p,q)$ such that every finite family \mathfrak{F} of compact, convex sets in \mathbb{R}^d satisfying the (p,q)-property can be pierced by $c_d(p,q)$ points?

Theorem (N. Alon, D. Kleitman (1992))

```
There is such a constant c_d(p,q).
```

The smallest such constant is denoted by $HD_d(p,q)$.

æ

• The first non-trivial case is to determine $HD_2(4,3)$.

< □ > < /□ >

3. 3

- The first non-trivial case is to determine $HD_2(4,3)$.
- Alon Kleitman proof: $HD_2(4,3) \leq 243$.

э

- The first non-trivial case is to determine $HD_2(4,3)$.
- Alon Kleitman proof: $HD_2(4,3) \leq 243$.
- However, ther best known lower bound is $HD_2(4,3) \ge 4$.

э

- The first non-trivial case is to determine $HD_2(4,3)$.
- Alon Kleitman proof: $HD_2(4,3) \leq 243$.
- However, ther best known lower bound is $HD_2(4,3) \ge 4$.

Theorem (Gyárfás, Kleitman, Tóth (2001)) $HD_2(4,3) \le 13.$

4 / 24

Main Theorem

Theorem (M. 2020+) $HD_2(4,3) \le 9.$

< □ > < /□ >

▶ < ∃ >

• Let $\Delta^n = \operatorname{conv}\{e_i : i \in [n+1]\}$ (the standard *n*-dimensional simplex)

3

< ∃⇒

< A

- Let $\Delta^n = \operatorname{conv}\{e_i : i \in [n+1]\}$ (the standard *n*-dimensional simplex)
- Every $J \subset [n+1]$ corresponds to the face $\sigma_J = \operatorname{conv}\{e_i : i \in J\}$ of Δ^n .

- Let $\Delta^n = \operatorname{conv}\{e_i : i \in [n+1]\}$ (the standard *n*-dimensional simplex)
- Every $J \subset [n+1]$ corresponds to the face $\sigma_J = \operatorname{conv}\{e_i : i \in J\}$ of Δ^n .

Theorem (KKM Theorem (1928))

Let A_1, \ldots, A_{n+1} be open subsets of Δ^n , such that $\sigma_J \subset \bigcup_{i \in J} A_i$ for all $J \subset [n+1]$. Then $\bigcap_{i=1}^{n+1} A_i \neq \emptyset$.

3

- 2

8 / 24

- 2

990

9 / 24

3

2-interval:

< □ > < /□ >

▶ < ∃ >

æ

2-interval:

 τ : piercing number

Daniel McGinnis

A Family of Convex Sets in the Plane with th

æ

< ∃⇒

2-interval:

 τ : piercing number ν : matching number

э

ъ.

2-interval:

 τ : piercing number ν : matching number

Theorem (Tardos (1995))

A family of 2-intervals satisfies $\tau \leq 2\nu$.

• Let ${\mathcal F}$ be a finite family of compact, convex sets in ${\mathbb R}^2$ with the (4,3)-property.

- Let ${\mathcal F}$ be a finite family of compact, convex sets in ${\mathbb R}^2$ with the (4,3)-property.
- Let $f:[0,1] \longrightarrow S^1$ be a parameterization of the unit circle f(0) = f(1) = (1,0)

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

э

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

Let $x = (x_1, x_2, x_3, x_4) \in \Delta^3$ (recall $x_1 + x_2 + x_3 + x_4 = 1$).

13/24

We define the set A_i to contain a point $x \in \Delta^3$ whenever there are sets $F_1, F_2, F_3 \in \mathcal{F}$ such that $F_1 \cap F_2 \cap F_3 \neq \emptyset$ and $F_k \cap F_j \subset R_x^i$ when $k \neq j$.

We define the set A_i to contain a point $x \in \Delta^3$ whenever there are sets $F_1, F_2, F_3 \in \mathcal{F}$ such that $F_1 \cap F_2 \cap F_3 \neq \emptyset$ and $F_k \cap F_j \subset R_x^i$ when $k \neq j$.

• First we consider the case when there is some $x \notin \bigcup_{i=1}^{4} A_i$

э

- First we consider the case when there is some $x \notin \bigcup_{i=1}^{4} A_i$
- For $F \in \mathcal{F}$, we define a 2-interval on the two line segments

- First we consider the case when there is some $x \notin \bigcup_{i=1}^{4} A_i$
- For $F \in \mathcal{F}$, we define a 2-interval on the two line segments

- First we consider the case when there is some $x \notin \bigcup_{i=1}^{4} A_i$
- For $F \in \mathcal{F}$, we define a 2-interval on the two line segments

• This family of 2-intervals has matching number at most 3.

э

16/24

- This family of 2-intervals has matching number at most 3.
- \mathfrak{F} can be pierced by 6 points ($au \leq 2
 u$)

э

• We can assume that $\Delta^3 \subset \bigcup_{i=1}^4 A_i$.

∃ →

- We can assume that $\Delta^3 \subset \cup_{i=1}^4 A_i$.
- In this case A_1, A_2, A_3, A_4 is a KKM cover so there exists $x \in \cap_i A_i$.

17 / 24

- We can assume that $\Delta^3 \subset \cup_{i=1}^4 A_i$.
- In this case A_1, A_2, A_3, A_4 is a KKM cover so there exists $x \in \cap_i A_i$.

17 / 24

From now on we fix a point $x \in \cap_i A_i$.

æ

590

From now on we fix a point $x \in \cap_i A_i$.

From now on we fix a point $x \in \cap_i A_i$.

3. 3

18/24

• Let $\mathcal{F}' \subset \mathcal{F}$ be the family of sets not pierced by c.

э

- Let $\mathfrak{F}' \subset \mathfrak{F}$ be the family of sets not pierced by c.
- Let $\mathfrak{F}_i \subset \mathfrak{F}'$ be the sets that do not intersect R^i_x

- Let $\mathcal{F}' \subset \mathcal{F}$ be the family of sets not pierced by c.
- Let ${\mathfrak F}_i \subset {\mathfrak F}'$ be the sets that do not intersect R^i_x

- Let $\mathcal{F}' \subset \mathcal{F}$ be the family of sets not pierced by c.
- Let $\mathfrak{F}_i \subset \mathfrak{F}'$ be the sets that do not intersect R^i_x

$$ullet$$
 We have that ${\mathfrak F}'=\cup_i{\mathfrak F}_i$

• We show that \mathcal{F}_1 can be pierced by 2 points

∃ →

990

- \bullet We show that \mathfrak{F}_1 can be pierced by 2 points
- Together with c, we can pierce \mathcal{F} with 9 points.

э

20 / 24

- We show that \mathfrak{F}_1 can be pierced by 2 points
- Together with c, we can pierce \mathcal{F} with 9 points.

Goal: find two lines so that the corresponding family of 2-intervals has matching number $1~(\tau \leq 2\nu)$

Let C_1, C_2, C_3 be three sets such that $C_1 \cap C_2 \cap C_3 \neq \emptyset$ and their pairwise intersections are contained in R_x^1 .

21/24

Let C_1, C_2, C_3 be three sets such that $C_1 \cap C_2 \cap C_3 \neq \emptyset$ and their pairwise intersections are contained in R_x^1 .

Lemma

Let $H, G \in \mathfrak{F}_1$. Then $H \cap G$ intersects two of C_1, C_2, C_3 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

590

22 / 24

3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○

イロト イヨト イヨト イヨト

3

990

Thank You!

æ

990