A Family of Convex Sets in the Plane with the $(4,3)$-Property can be Pierced by 9 Points

Daniel McGinnis

lowa State University

Helly's Theorem

Helly's Theorem

Definition

A family of sets is said to be pierced by a set S if each set in the family contains a point in S.

Helly's Theorem

Definition

A family of sets is said to be pierced by a set S if each set in the family contains a point in S.

Theorem (Helly's Theorem (1913))
Let \mathcal{F} be a finite family of compact, convex sets in \mathbb{R}^{d} such that every $d+1$ sets in \mathcal{F} have a common point. Then \mathcal{F} can be pierced by 1 point.

(p, q)-property

Definition

A family \mathcal{F} satisfies the (p, q)-property if for every p sets of \mathcal{F}, q of them have a common point.

(p, q)-property

Definition

A family \mathcal{F} satisfies the (p, q)-property if for every p sets of \mathcal{F}, q of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \geq q \geq d+1$. Does there exist a constant $c_{d}(p, q)$ such that every finite family \mathcal{F} of compact, convex sets in \mathbb{R}^{d} satisfying the (p, q)-property can be pierced by $c_{d}(p, q)$ points?

(p, q)-property

Definition

A family \mathcal{F} satisfies the (p, q)-property if for every p sets of \mathcal{F}, q of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \geq q \geq d+1$. Does there exist a constant $c_{d}(p, q)$ such that every finite family \mathcal{F} of compact, convex sets in \mathbb{R}^{d} satisfying the (p, q)-property can be pierced by $c_{d}(p, q)$ points?

Theorem (N. Alon, D. Kleitman (1992))

There is such a constant $c_{d}(p, q)$.

(p, q)-property

Definition

A family \mathcal{F} satisfies the (p, q)-property if for every p sets of \mathcal{F}, q of them have a common point.

Problem (Hadwiger and Debrunner (1957))

Let $p \geq q \geq d+1$. Does there exist a constant $c_{d}(p, q)$ such that every finite family \mathcal{F} of compact, convex sets in \mathbb{R}^{d} satisfying the (p, q)-property can be pierced by $c_{d}(p, q)$ points?

Theorem (N. Alon, D. Kleitman (1992))

There is such a constant $c_{d}(p, q)$.
The smallest such constant is denoted by $H D_{d}(p, q)$.

Upper Bounds on $H D_{2}(4,3)$

Upper Bounds on $\mathrm{HD}_{2}(4,3)$

- The first non-trivial case is to determine $H D_{2}(4,3)$.

Upper Bounds on $\mathrm{HD}_{2}(4,3)$

- The first non-trivial case is to determine $H D_{2}(4,3)$.
- Alon - Kleitman proof: $H D_{2}(4,3) \leq 243$.

Upper Bounds on $H D_{2}(4,3)$

- The first non-trivial case is to determine $H D_{2}(4,3)$.
- Alon - Kleitman proof: $H D_{2}(4,3) \leq 243$.
- However, ther best known lower bound is $H D_{2}(4,3) \geq 4$.

Upper Bounds on $\mathrm{HD}_{2}(4,3)$

- The first non-trivial case is to determine $H D_{2}(4,3)$.
- Alon - Kleitman proof: $H D_{2}(4,3) \leq 243$.
- However, ther best known lower bound is $H D_{2}(4,3) \geq 4$.

Theorem (Gyárfás, Kleitman, Tóth (2001))
$H D_{2}(4,3) \leq 13$.

Main Theorem

Theorem (M. 2020+)
$H D_{2}(4,3) \leq 9$.

KKM Theorem

- Let $\Delta^{n}=\operatorname{conv}\left\{e_{i}: i \in[n+1]\right\}$ (the standard n-dimensional simplex)

KKM Theorem

- Let $\Delta^{n}=\operatorname{conv}\left\{e_{i}: i \in[n+1]\right\}$ (the standard n-dimensional simplex)
- Every $J \subset[n+1]$ corresponds to the face $\sigma_{J}=\operatorname{conv}\left\{e_{i}: i \in J\right\}$ of Δ^{n}.

KKM Theorem

- Let $\Delta^{n}=\operatorname{conv}\left\{e_{i}: i \in[n+1]\right\}$ (the standard n-dimensional simplex)
- Every $J \subset[n+1]$ corresponds to the face $\sigma_{J}=\operatorname{conv}\left\{e_{i}: i \in J\right\}$ of Δ^{n}.

Theorem (KKM Theorem (1928))

Let A_{1}, \ldots, A_{n+1} be open subsets of Δ^{n}, such that $\sigma_{J} \subset \cup_{i \in J} A_{i}$ for all $J \subset[n+1]$. Then $\cap_{i=1}^{n+1} A_{i} \neq \emptyset$.

KKM Theorem

KKM Theorem

KKM Theorem

KKM Theorem

2-Interval Theorem

2-interval:

2-Interval Theorem

2-interval:
τ : piercing number

2-Interval Theorem

2-interval:
τ : piercing number ν : matching number

2-Interval Theorem

2-interval:
τ : piercing number
ν : matching number
Theorem (Tardos (1995))
A family of 2-intervals satisfies $\tau \leq 2 \nu$.

Using the KKM Theorem

- Let \mathcal{F} be a finite family of compact, convex sets in \mathbb{R}^{2} with the $(4,3)$-property.

Using the KKM Theorem

- Let \mathcal{F} be a finite family of compact, convex sets in \mathbb{R}^{2} with the $(4,3)$-property.
- Let $f:[0,1] \longrightarrow S^{1}$ be a parameterization of the unit circle

$$
f(0)=f(1)=(1,0)
$$

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Delta^{3}\left(\right.$ recall $\left.x_{1}+x_{2}+x_{3}+x_{4}=1\right)$.

Using the KKM Theorem

We define the set A_{i} to contain a point $x \in \Delta^{3}$ whenever there are sets $F_{1}, F_{2}, F_{3} \in \mathcal{F}$ such that $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$ and $F_{k} \cap F_{j} \subset R_{x}^{i}$ when $k \neq j$.

Using the KKM Theorem

We define the set A_{i} to contain a point $x \in \Delta^{3}$ whenever there are sets $F_{1}, F_{2}, F_{3} \in \mathcal{F}$ such that $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$ and $F_{k} \cap F_{j} \subset R_{x}^{i}$ when $k \neq j$.

Using the KKM Theorem

- First we consider the case when there is some $x \notin \cup_{i=1}^{4} A_{i}$

Using the KKM Theorem

- First we consider the case when there is some $x \notin \cup_{i=1}^{4} A_{i}$
- For $F \in \mathcal{F}$, we define a 2 -interval on the two line segments

Using the KKM Theorem

- First we consider the case when there is some $x \notin \cup_{i=1}^{4} A_{i}$
- For $F \in \mathcal{F}$, we define a 2 -interval on the two line segments

Using the KKM Theorem

- First we consider the case when there is some $x \notin \cup_{i=1}^{4} A_{i}$
- For $F \in \mathcal{F}$, we define a 2 -interval on the two line segments

Using the KKM Theorem

- This family of 2 -intervals has matching number at most 3 .

Using the KKM Theorem

- This family of 2 -intervals has matching number at most 3 .
- \mathcal{F} can be pierced by 6 points $(\tau \leq 2 \nu)$

Using the KKM Theorem

- We can assume that $\Delta^{3} \subset \cup_{i=1}^{4} A_{i}$.

Using the KKM Theorem

- We can assume that $\Delta^{3} \subset \cup_{i=1}^{4} A_{i}$.
- In this case $A_{1}, A_{2}, A_{3}, A_{4}$ is a KKM cover so there exists $x \in \cap_{i} A_{i}$.

Using the KKM Theorem

- We can assume that $\Delta^{3} \subset \cup_{i=1}^{4} A_{i}$.
- In this case $A_{1}, A_{2}, A_{3}, A_{4}$ is a KKM cover so there exists $x \in \cap_{i} A_{i}$.

From now on we fix a point $x \in \cap_{i} A_{i}$.

From now on we fix a point $x \in \cap_{i} A_{i}$.

From now on we fix a point $x \in \cap_{i} A_{i}$.

Piercing \mathcal{F}_{i}

- Let $\mathcal{F}^{\prime} \subset \mathcal{F}$ be the family of sets not pierced by c.

Piercing \mathcal{F}_{i}

- Let $\mathcal{F}^{\prime} \subset \mathcal{F}$ be the family of sets not pierced by c.
- Let $\mathcal{F}_{i} \subset \mathcal{F}^{\prime}$ be the sets that do not intersect R_{x}^{i}

Piercing \mathcal{F}_{i}

- Let $\mathcal{F}^{\prime} \subset \mathcal{F}$ be the family of sets not pierced by c.
- Let $\mathcal{F}_{i} \subset \mathcal{F}^{\prime}$ be the sets that do not intersect R_{x}^{i}

Piercing \mathcal{F}_{i}

- Let $\mathcal{F}^{\prime} \subset \mathcal{F}$ be the family of sets not pierced by c.
- Let $\mathcal{F}_{i} \subset \mathcal{F}^{\prime}$ be the sets that do not intersect R_{x}^{i}

- We have that $\mathcal{F}^{\prime}=\cup_{i} \mathcal{F}_{i}$

Piercing \mathcal{F}_{i}

- We show that \mathcal{F}_{1} can be pierced by 2 points

Piercing \mathcal{F}_{i}

- We show that \mathcal{F}_{1} can be pierced by 2 points
- Together with c, we can pierce \mathcal{F} with 9 points.

Piercing \mathcal{F}_{i}

- We show that \mathcal{F}_{1} can be pierced by 2 points
- Together with c, we can pierce \mathcal{F} with 9 points.

Goal: find two lines so that the corresponding family of 2 -intervals has matching number $1(\tau \leq 2 \nu)$

Piercing \mathcal{F}_{i}

Let C_{1}, C_{2}, C_{3} be three sets such that $C_{1} \cap C_{2} \cap C_{3} \neq \emptyset$ and their pairwise intersections are contained in R_{x}^{1}.

Piercing \mathcal{F}_{i}

Let C_{1}, C_{2}, C_{3} be three sets such that $C_{1} \cap C_{2} \cap C_{3} \neq \emptyset$ and their pairwise intersections are contained in R_{x}^{1}.

Lemma

Let $H, G \in \mathcal{F}_{1}$. Then $H \cap G$ intersects two of C_{1}, C_{2}, C_{3}.

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{i}

Piercing \mathcal{F}_{1}

Piercing \mathcal{F}_{1}

Piercing \mathcal{F}_{1}

Piercing \mathcal{F}_{1}

Piercing \mathcal{F}_{1}

Thank You!

