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Abstract
The matching graph M(G) of a simple graph G has vertices which represent edges in G

where two vertices in M(G) are adjacent if and only if the corresponding edges in G do not
share an endpoint. In this paper, we examine sequences of graphs generated by iterating the
matching graph operation and characterize the behavior of various initial graphs. We show that
a handful of graphs arrive at the empty set, two graphs “stabilize” and return themselves for
each iteration, and all other graphs grow without bound while accumulating certain subgraphs.

1 Introduction
Over the course of this paper, we will be studying sequences of graphs generated by the matching
graph operation. Given a simple graph G, its matching graph M(G) has vertices that represent
edges of G; two vertices in M(G) are connected by an edge if and only if the corresponding edges
of G are not incident. For readers familiar with graph theory, M(G) is the complement of the
line graph L(G). In this paper, we completely characterize the end behavior of any graph under
iteration of the matching graph operation.

G M(G) M2(G)

Figure 1: A graph G and its first and second matching graphs.

In Section 2, we define iterated matching graphs, dissipation, and snipped subgraphs. We then
give some immediate results about these objects. Section 3 lists all graphs which dissipate, making a
“tree” of graphs related by the matching graph operation (Figure 7). Graphs that do not dissipate
are covered in Section 4. We present C5 and the net graph as fundamental to our study (see
Figure 8), introduce some useful tools for casework, and examine all connected graphs based on
diameter. In Section 5, our work culminates in some truly fascinating results. In particular, we see
that there is no graph except for C5 or the net graph which gives itself for some iterated matching
graph. We also show that if a graph does not dissipate and is not C5 or the net graph, then the
number of edges grows without bound as we continue taking the matching graph.
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Towards the end of finalizing mathematical content, we became aware of a paper [CHJS97]
which had a good deal of intersection with our work in its fourth section, though in very different
language. The authors study the jump graph J(G) which has an equivalent definition to our
matching graph. In examining iterated jump graphs, they completely catalogue what we will later
call d-finite graphs and recognize the importance of C5 and the net graph. To prove these results,
they define and use tools which are in some ways related to our notion of the snipped subgraph.
This is where their analysis ended, though, whereas we will study more about the nature of d-infinite
graphs. Specifically, our results stated in Theorem 5.1, Theorem 5.4, Theorem 5.5, and relating
corollaries and lemmas do not appear in [CHJS97].

Our alternative name for the jump graph comes from the matching complex of a graph, an
object studied and described as in [Jon08, Chapter 11] and [Wac03]. Our matching graph is the
1-skeleton of the matching complex. We were unable to find any other literature connecting the
study of jump graphs and matching complexes, which both have a good deal of writing on them.

2 Preliminaries
A graph G is simple if any two vertices are connected by at most one edge and there are no
edges from a single vertex to itself. An isolated vertex is a vertex that is not the endpoint of any
edge. Throughout the paper, we assume that all graphs are simple, finite, and nonempty unless
explicitly stated. Prior to performing the matching graph operation, we will often consider two
graphs equivalent if they differ by only isolated vertices in light of Definition 2.1.

We denote the vertex set of a graph G by V (G) and its edge set by E(G), while we denote the
number of vertices by |V (G)| and the number of edges by |E(G)|. For all terms not defined here,
see a standard graph theory textbook such as [Wes96].

Definition 2.1. Given a graph G, its matching graph M(G) is the graph obtained by representing
each edge of G by a vertex in M(G). Two vertices in M(G) are connected if and only if their
corresponding edges in G are not incident.
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Figure 2: A graph G and its matching graph M(G). Vertices in M(G) are connected iff the
corresponding edges in G do not share an endpoint.

Remark 2.2. This notion is closely related to that of the matching complex, which is more com-
monly studied; see, e.g., [Jon08, Chapter 11] and [Wac03]. Given a graph G, a matching is a set of
edges such that no two edges in the set are incident. The matching complex of G is the set of all
matchings in G. Note that the matching graph contains only the matchings of cardinality at most
two. In this way, the matching graph is a particular subset of the matching complex, known as
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its 1-skeleton. Furthermore, a set of edges in G forms a matching if and only if the corresponding
vertices in M(G) form a clique, a subset of vertices such that all two have an edge between them.
Thus the matching graph encodes all of the same information as the matching complex.

Remark 2.3. It should also be noted that there is another definition under the name “matching
graph” as given in [ES98]. This notion is completely unrelated to our own.

Consider the connection between the matching graph and the well-studied line graph L(G).
Vertices of the line graph represent edges in G, and these vertices are connected with an edge if and
only if the corresponding edges are incident. With this definition, we see that M(G) = L(G)c, i.e.,
M(G) is the the complement of L(G). The line graph has been an important tool for approaching
our study of matching graphs. We will use this observation in Section 4.

With the above definition of the matching graph, there are a few immediate results we can state
about subgraphs. These are phrased in terms of induced subgraphs; a subgraph H of G is induced
if there are no two vertices in H which are connected in G but not in H.

Lemma 2.4. If H is a subgraph of G, then M(H) is an induced subgraph of M(G).

Proof. Let H be a subgraph of G. Every edge in H is also an edge in G so V (M(H)) ⊆ V (M(G)).
If there are two edges e1, e2 in H which are non-incident in H then they are also non-incident in
G, and so E(M(H)) ⊆ E(M(G)). Together these imply M(H) ⊆M(G). Furthermore if there are
two edges e1, e2 in H and G which are non-incident in G, then they must be non-incident in H.
Thus M(H) must be an induced subgraph of M(G).

Lemma 2.5. If H and G are connected graphs, M(G) 6= M(C3), M(H) 6= M(C3), and M(H) is
an induced subgraph of M(G) then H is a subgraph of G.

Proof. Suppose M(H) is an induced subgraph of M(G). Then, since M(G)c = L(G), we know
that L(H) is an induced subgraph of L(G). Because we assume that M(H) 6= M(C3), we know
that L(H) 6= L(C3). Hence, by Whitney’s Graph Isomorphism Theorem [Whi92], H is uniquely
determined. By the same logic, since M(G) 6= M(C3) then G is uniquely determined as well. Then
H must be a subgraph of G.

Notice that Lemma 2.5 is a partial converse of Lemma 2.4. We can expand Lemma 2.5 to
include some disconnected graphs with more conditions, but this is not relevant to the rest of the
discussion. Lemma 2.4 will be much more useful moving forward.

Now, we turn attention towards the main object of study: iterated matching graphs.

Definition 2.6. Let G be a graph and define M0(G) = G. For k ≥ 1, the kth matching graph,
denoted Mk(G), is the matching graph of Mk−1(G).

Our goal is to study the behavior of the sequence {Mk(G)}. Of particular interest is determining
whether a given graph dissipates in the following sense.

Definition 2.7. A graph G dissipates if there is some k ≥ 0 such that Mk(G) = ∅. The dissipation
number, denoted d(G), is the smallest k ≥ 0 such that Mk(G) = ∅. If there is no such k, then
d(G) =∞.

For examples of dissipation, see Figure 7. The reader can find the graph G from Figure 2 in
the lower right-hand corner. By counting the arrows between G and the empty set, we see that
d(G) = 7.
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If d(G) <∞, we will sometimes say that G is d-finite. Otherwise, we will say that G is d-infinite.
In studying the behavior of Mk(G), we will see that the following two notions play an integral part.

Definition 2.8. Suppose we have a graph G with vertex set V (G) = {v1, . . . , vn} and edge set
E(G). A quotient graph Q of G is defined in the following way. Take some partition of V (G) and
then apply the equivalence relation created by this partition, letting [vi] denote such an equivalence
class. The vertex set and edge set of Q are defined below.

V (Q) =
{

[vi] : vi ∈ V (G)
}

E(Q) =
{
{[vi], [vk]} : {vi, vk} ∈ E(G), [vi] 6= [vk]

}
Note that, by definition, Q will not have any double edges or loops.

In a qualitative way, a quotient graph of a given graph is obtained by gluing vertices together
and then deleting double edges and loops.

G Q

Figure 3: A graph G and a quotient Q of G. The colors represent our partition of V (G).

Definition 2.9. A snipped subgraph of a graph G is a quotient graph of a subgraph of G.

Remark 2.10. In particular, any subgraph of G is also a snipped subgraph of G. This means G
is a snipped subgraph of itself.

Above, we define a snipped subgraph by starting with G, taking a subgraph, and gluing together
some of the vertices. This direction is helpful for understanding the definition, but the motivation
is more clear if we conceptualize the snipped subgraph in another way. Suppose H is a snipped
subgraph of G. Split apart the quotiented vertices of H and overlay it on top of G. Notice that the
vertex-splitting action preserves disconnections among edges in H. Edges in M(H) correspond to
disconnections between edges in H. In this way, we know edges in M(H) will be preserved under
“snipping” of H. This property allows us to state the result in Lemma 2.11.

Figure 4 shows an example of a graph G and three of its snipped subgraphs. We can see how
disconnections between edges in Hi are preserved under “snipping” of Hi. In graph H1, edges 1
and 6 are non-incident and they are still non-incident in G. However, in graph H2, edges 1 and 6
are incident, but these edges are non-incident in G.

The next lemma will show more explicitly our interest in snipped subgraphs. In the proof of
Lemma 2.11, we will use the fact that if H is a quotient graph of G then there exists some subgraph
G′ ⊆ G such that |E(G′)| = |E(H)| and H is a quotient graph of G′. We omit the proof of this,
but it centers around considering the subset of edges of G which contribute to our construction of
H and then simply removing any “unnecessary” edges in G which would give us double edges or
loops if we considered the more qualitative notion of a quotient graph.
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Figure 4: Graphs H1, H2, and H3 are snipped subgraphs of G

Lemma 2.11. If H is a snipped subgraph of G, then M(H) is a subgraph of M(G).

Proof. Let G′ be a subgraph of G such that H is a quotient graph of G′ and |E(G′)| = |E(H)|. For
each edge {vi, vj} ∈ E(G′), we associate it with the unique edge {[vi], [vj ]} ∈ E(H).

There is at most one such edge in H identified with an edge in G′. If there were, say, two, we must
have some edges {[v1], [v2]}, {[v3], [v4]} ∈ E(H) both associated with {vi, vj} ∈ E(G′). Without
loss of generality, this indicates that [v1] = [v3] = [vi] and [v2] = [v4] = [vj ]. By our definition
of quotient graph, there are no double edges and so we must have {[v1], [v2]} = {[v3], [v4]}. Now
because we also know |E(G′)| = |E(H)| we see that we must have each edge e ∈ E(G′) associated
with exactly one, unique edge e′ ∈ H in this way.

For each vertex eij = {vi, vj} ∈ M(G′) call the associated vertex in M(G) (using the above
notions) e′ij = {[vi], [vj ]}. Now consider two distinct adjacent vertices e′mn, e′kl ∈ M(H). Because
H is a quotient graph of G′ we know that emn and ekl are adjacent in M(G′). We thus see that
M(H) is isomorphic to a subgraph of M(G′). We know that M(G′) ⊆ M(G) by Lemma 2.4 and
so M(H) is a subgraph of M(G).

Consider Lemmas 2.4 and 2.11 side by side. Lemma 2.4 gives us a way to recognize when we
have a certain induced subgraph of M(G) while Lemma 2.11 gives us a way to see when we have
just a certain subgraph of M(G). Because every subgraph is also itself a snipped subgraph, the set
of subgraphs of G is contained in the set of snipped subgraphs of G. Hence, it is easier to satisfy
the assumptions of Lemma 2.11 than those of Lemma 2.4. Because of this, and the fact that we
do not need to consider induced subgraphs of M(G) here, Lemma 2.11 will be very useful as we
continue in our discussion.

Proposition 2.12. If H is a snipped subgraph of G, then d(H) ≤ d(G).

Proof. First, consider if d(G) =∞. Then, trivially we have d(H) ≤ d(G) =∞.
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Now, consider when d(G) is finite and let d(G) = d0. If d0 = 0 then G = ∅ and the result is
immediate. Thus, let d0 be at least 1. Applying Lemma 2.11 iteratively, we conclude that

Mk(H) ⊆Mk(G)

for all k ≥ 1. Now, let k = d0 and consider that

Md0(H) ⊆Md0(G) = ∅.

And so we have Md0(H) = ∅ and it follows directly that

d(H) ≤ d0 = d(G).

Corollary 2.13. If H is a snipped subgraph of G and d(H) =∞, then d(G) =∞.

Corollary 2.13 reveals our primary use of snipped subgraphs. When presented with a graph G,
we can look for any snipped subgraph H which we know to have d(H) =∞. If we can find such a
graph, we know that d(G) =∞ as well. This makes it much simpler to determine if a given graph
will dissipate or not. We will see Corollary 2.13 become very relevant in Section 4.

3 Graphs with finite d value
There are relatively few graphs with a finite d value. Notice that if G is d-finite then, for any k ∈ N,
Mk(G) is also d-finite. Also, if d(G) < ∞, then by definition Md(G) = ∅. In this way, we can
build a tree of all d-finite graphs by “working backwards” from the empty set. First, we notice
that Md(G) = ∅ if Md−1(G) is either the empty set or a set of isolated vertices. We then take
this latter possibility and consider what Md−2(G) must be. We continue doing this “backwards
matching operation” until we are left with some Md−n(G) which cannot be the matching graph of
any graph. In order to know when we have reached this point, we use Beineke’s characterization of
line graphs from [Bei70], in particular the information from Figures 5 and 6. In the tree of graphs
(Figure 7), infinite families of graphs are blocked in grey and isolated vertices are not explicitly
drawn where they may appear. For example, see that the graphs C4 and C4 with a diagonal edge
lead to the same graph in Figure 7. We usually ignore isolated vertices because adding an isolated
vertex to G does not change M(G).

In his 1970 paper, Beineke showed that a graph is a line graph for another graph G if and only
if it does not have one of the nine induced subgraphs in Figure 5 [Bei70]. Recall that L(G) is the
complement of M(G). This implies that if some graph G is the matching graph of another graph
G′, then Gc must not have any of Beineke’s nine forbidden induced subgraphs. Equivalently, G
must not have the complement of any forbidden graph as an induced subgraph. These complements
are shown in Figure 6.

While we only outline an idea for a proof here, Figure 7 does contains all d-finite graphs as
shown rigorously in [CHJS97]. Hence, the reader can look at [CHJS97] if they would like to see the
list in Figure 7 catalogued in rigor.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5: The nine graph which Beineke’s theorem says cannot be an induced subgraph of any
line graph.

(a) (b) (c)
(d) (e)

(f) (g) (h) (i)

Figure 6: Complements of the nine graphs from Figure 5; equivalently, the graphs which cannot
occur as induced subgraphs of any matching graph.
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Figure 7: Graphs that dissipate. The arrows represent performing the matching graph operation. The d value of
a given graph is found by counting the number of arrows from that graph to the empty set. Whenever a graph

contains a forbidden subgraph from Figure 6, one such subgraph is highlighted in red.
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4 Graphs with infinite d value
In this section, we turn to graphs with infinite d value. In some sense, Figure 7 already gives a
characterization of d-infinite graphs—if G does not appear in Figure 7, then d(G) =∞. However,
there are more detailed questions we can answer about d-infinite graphs. In particular: what is the
end behavior of these graphs? Is there a graph which satisfies Mk(G) = G for some k ≥ 1? In the
following discussion, we will begin to answer these questions.

4.1 Two Special Graphs
As we have discussed earlier, the line graph L(G) and the matching graph M(G) are complements.
This follows directly from the definition of each. Knowing this, we can apply the following result
due to Aigner.

Theorem 4.1 ([Aig69]). The only graphs satisfying L(G)c = G are C5 and the net graph N .

Applying this to iterated matching graphs, we have the following consequence.

Corollary 4.2. If G is a graph, then Mk(G) = G for all k ≥ 0 if and only if G is C5 or N .

C5 N

Figure 8: C5 and the net graph N . These are the only graphs such that G = M(G).

Since C5 and N have themselves as matching graphs, if G has C5 or N as a subgraph, then for
every k ≥ 1 we know C5 or N is a subgraph of Mk(G) by Lemma 2.4. Given this, we can talk
about accumulation.

Definition 4.3. A graph G accumulates C5 (resp. N) if there is some k such that C5 ⊆ Mk(G)
(resp. N ⊆Mk(G)).

Like with any d-infinite snipped subgraph, if G has C5 or N as a snipped subgraph, then it will
have infinite d value by Proposition 2.12. The surprising result is that the converse turns out to
be true. If d(G) = ∞, then G will accumulate C5 or N . In the following two subsections, we will
focus on proving this fact which will be completed in Theorem 5.1.

4.2 Some Useful Graphs
The proofs in Section 4.3 involve a decent amount of casework. In order to make this more manage-
able, we will introduce some useful graphs in addition to C5 and N . Each of the following graphs
has an infinite d value and accumulates C5. While performing casework in the next section, we can
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look for C5, N , or one of these “useful graphs” as a snipped subgraph. If a graph G has one of
these, then we know d(G) =∞ and G accumulates C5 or N .

Recall that Corollary 2.13 tells us that if H is a snipped subgraph of G and d(H) = ∞, then
d(G) = ∞. Also, Lemma 2.11 says that if H is a snipped subgraph of G, then M(H) ⊆ M(G).
These two results will allow us to conclude that the following graphs have infinite d value and
accumulate C5.

First, we have K2,3 in Figure 9.

K2,3 M(K2,3)

Figure 9: The graph K2,3 and its matching graph.

The matching graph of K2,3 has C5 as a snipped subgraph. We conclude d(K2,3) = ∞ and it
accumulates C5.

Next, we have the Bug Graph in Figure 10.

G M(G)

Figure 10: The bug graph and its matching graph.

The matching graph of the bug graph has K2,3 as a snipped subgraph. We conclude the bug
graph has d(G) =∞ and it accumulates C5.

Next, we have the Stickman Graph in Figure 11.

G M(G)

Figure 11: The stickman graph and its matching graph.

The matching graph of the stickman has K2,3 as a snipped subgraph. We conclude the stickman
has d(G) =∞ and it accumulates C5.

10



Lastly, we have the Pendulum Graph in Figure 12.

G M(G)

Figure 12: The pendulum graph and its matching graph.

The matching graph of this graph has K2,3 as a snipped subgraph. We conclude the pendulum has
d(G) =∞ and it accumulates C5.

Remark 4.4. All of the names for the above graphs (except for K2,3) are original. There are
more established names for the bug, stickman, and pendulum, but we decided against using them
because of the memorable—and entertaining—nature of our own names.

4.3 Diameter and d-infinite graphs
In order to show that every graph with infinite d value accumulates C5 or N , we will split all graphs
into cases based on diameter. The diameter of a graph G is the length of the longest shortest path
between any pair of vertices of G. The diameter of a disconnected graph is defined to be infinite.

Lemma 4.5. If a connected graph G has a diameter of 5 or more then G does not dissipate (i.e.
d(G) =∞) and G accumulates C5.

Proof. If G has a diameter of at least 5 then there is some path in G of length 5. Thus, we have
C5 as a snipped subgraph so d(G) =∞ by Proposition 2.12 and C5 ⊆M(G) by Lemma 2.11.

Lemma 4.6. Suppose G has a diameter of 4. Then the following are equivalent:

1. G has an infinite d value,

2. G accumulates C5 or N , and

3. G has 6 or more edges.

Proof. Let P be a shortest path in G with a length of 4 and let P have endpoints A and B.

A

B

If G only has 4 edges, then G = P . In this case d(G) is finite (see Figure 7). Now consider
if G has 5 edges. Preserving the diameter constraint on G, the following graphs are the only two
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options for G.

A

B

A

B

We find that both these graphs have finite d value, as shown in Figure 7.
Now, let us consider when G has 6 or more edges. There must be two additional edges in G such

that these edges and P form a connected subgraph of G. First, suppose that one of these edges is
connected to either A or B. This edge cannot have another endpoint in P . If it did, then we would
contradict the assumption that P is a shortest path from A to B. Therefore, this additional edge
and P form a path of length 5 in G, giving C5 as a snipped subgraph in G. This implies d(G) =∞
and G accumulates C5.

Thus, we turn our attention to the possibilities where neither additional edge is adjacent to A
or B. There are two cases: only one of two edges is adjacent to a vertex in P , or both edges are.

In this first case, we immediately have C5 as a snipped subgraph, since we have a path of length
4—given by P—disjoint from a single edge. One subgraph of this case is shown in Figure 13, with
the snipped C5 in gold. So in this case, G has an infinite d value and accumulates C5.

A

B

Figure 13: If G has two additional edges connected to P and only one is adjacent to a vertex in P ,
then G will have C5 as a snipped subgraph.

Now, we address the second case: suppose that each additional edge has an endpoint which lies
in P . The possibilities are restricted by the assumption that P is a shortest path between A and
B. Adding the edges cannot create an alternative path from A to B that has a length less than 4.
For instance, we cannot an edge to P in the following way.

There are two ways to add the additional edges so that they form a cycle in G, and there are four
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possibilities for adding two edges that do not form a cycle. The reader can look at any exhaustive
list of small graphs such as that in [Ste] to confirm this.

A

B

(a)

A

B

(b)

A

B

(c)

A

B

v1

v2

(d)

A

v2

B

v1

(e)

A

B

(f)

Figure 14: There are six ways to add two edges to P such that both are adjacent to a vertex in P
which is not A or B and so that P remains a shortest path from A to B.

We claim that each of these graphs has an infinite d value and accumulates C5 or N . First,
graph (a) has P5 as a subgraph and hence C5 as a snipped subgraph. Next, both (b) and (d) have
K2,3 as a snipped subgraph. In (b) this can be seen by identifying vertices A and B. In (d), identify
A and B with each other and v1 and v2 with each other. Graphs (c) and (f) both have the bug as a
snipped subgraph. In both (c) and (f), identify vertices A and B to see this. Lastly, graph (e) has
the net graph N as a snipped subgraph. To see this, identify the vertices labeled v1 and v2 with
each other.

So in this second case, G will have infinite d value and accumulate C5 or N , since we have shown
this is true for graphs (a) - (f). Thus, if G has a diameter of 4 and at least 6 edges, it will have an
infinite d value and accumulate C5 or N . All graphs with diameter 4 and fewer than 6 edges will
dissipate and therefore never accumulate C5 or N .

Lemma 4.7. Suppose G has a diameter of 3. If d(G) = ∞, then it will accumulate C5 or N .
Furthermore, if G has diameter 3 and at least 7 edges, then d(G) =∞ with the single exception of
the family in Figure 15.

A

Figure 15: The only family of d-finite graphs with diameter 3 and at least 7 edges. Any number of
additional pendants can be added off of vertex A.
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Proof. Throughout this proof, whenever we say that a graph has finite d value “by explicit calcu-
lation,” one can look back to Figure 7 to find the relevant calculation.

Let P be a shortest path in G with length 3 and endpoints A and B.

A

B

If G has 3 edges, then G = P . This graph has a finite d value. If G has 4 edges, then it must
be the following graph.

This graph has a finite d value as well. If G has 5 edges, then it can be one of five possible
graphs shown in Figure 16. One can see that these are all the graphs with diameter 3 and 5 edges
by referencing a list of small graphs such as that given in [Ste].

Figure 16: All graphs with diameter 3 and 5 edges.

Each graph in Figure 16 has finite d value. We can see this through explicit calculation.
Now, let us consider the graphs with diameter 3 and exactly 6 edges. The possibilities, up to

isomorphism, are shown in Figure 17. Again, the reader can confirm that these are all options by
referencing [Ste].

Graphs (a) through (d) in Figure 17 have a finite d value which can be seen by explicit calcula-
tion. We will show that graphs (e) through (k) each have infinite d value and accumulate C5 or N :
(e) is the stickman, (f) is the bug graph, (g) is the pendulum, (h) has P5 as a subgraph, (i) is the
net graph N , (j) has C5 as a subgraph, and (k) has P5 as a subgraph. Therefore, if G has 6 edges
then it either has finite d value, or d(G) =∞ and G accumulates C5 or N .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 17: All graphs with a diameter of 3 and 6 edges. Graphs (a) - (d) dissipate while graphs
(e) - (k) have infinite d-value.

Now, suppose that G has diameter 3 and 7 or more edges. Then G must have a connected
subgraph containing P and 3 additional edges. If this subgraph has a diameter of 5 or greater, then
it will contain C5 as a snipped subgraph. This means d(G) = ∞ and G accumulates C5. If this
subgraph has diameter 4, then by Lemma 4.6 we conclude that this subgraph—and consequently
G—will have an infinite d value and accumulate C5 or N . If this subgraph has diameter 3, then
it must be one of the eleven graphs shown in Figure 17. The subgraph cannot have diameter less
than 3 because we are assuming that P is a shortest path between A and B.

If the subgraph of G is isomorphic to graphs (e) through (k) in Figure 17, we have already
shown that it is d-infinite and accumulates C5 or N , so by Lemmas 2.13 and 2.4, d(G) =∞ and G
accumulates C5 or N . Now, we will show that if G strictly contains any of the graphs (a) through
(d), it will have d =∞ and accumulate C5 or N , except if G is part of the family shown in Figure 15.

Before beginning the casework, we will make two observations. Consider the picture of graph
(a) below. Each of the blue vertices are identical under graph automorphism. Thus, without loss of
generality, we will consider additions to graph (a) involving v1 for all cases involving one blue vertex
since all other blue vertices will follow the same logic as v1. Now consider two graphs formed by
adding an edge to graph (a). In the first, connect any non-adjacent vertices vi and vj with an edge.
In the second, add a pendant edge to vi. Notice that second graph has the first graph as a snipped
subgraph. Because of this fact, we need not consider adding pendant edges to the graph unless
there is a vertex which cannot be connected to any other vertex in the graph due to a diameter
contradiction. These two observations will be applied to casework for graphs (b)-(d) as well.
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We will now examine graphs (a) through (d) from Figure 17 separately.

Graph (a)

v1
v2

v3 v4

Now we can consider additions to graph (a). Adding an edge between v1 and v4 will give the
bug as a subgraph, and adding an edge between v1 and and v3 gives the stickman as a subgraph. If
we add an edge between two blue vertices, we again get the bug as a snipped subgraph. The only
other two vertices in graph (a) that we can connect with an edge are v2 and v4. Adding this edge
gives a graph with finite d value, but with diameter 2. This means that G must strictly contain
this graph and fall into another case. Finally, we consider adding a pendant to v2. This graph has
finite d value and is part of the one exceptional family in Figure 15. So if G contains (a) as a strict
subgraph and is not part of the family given in Figure 15, then d(G) =∞ and G accumulates C5.

Graph (b)

v1
v2

v4 v5

v3

Like in the graph (a) case, we will consider v1 in place of both blue vertices because the logic is
interchangeable. We will again first consider ways to add an edge between two vertices in graph (b)
before considering the addition of pendants. Adding an edge between v1 and v3 or v1 and v4 gives
a path of length 5. Adding an edge between v1 and v5 gives C5 as a subgraph. Adding an edge
between v2 and v5 results in the bowtie graph with a pendant off the center vertex. The matching
graph of this graph has K2,3 as a snipped subgraph. If we add an edge from v3 to v4, we have a
path of length 5. Finally, an edge between v3 and v5 results in a graph with the bug as a subgraph.
Thus, if G contains graph (b) as a strict subgraph, it will have infinite d value and accumulate C5.

Graph (c)

v1
v2

v4 v5

v3

Next we consider ways that G can have graph (c) as a strict subgraph. Adding an edge between
two blue vertices will give a path of length 5, and adding an edge between v1 and v3 also gives
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a path of length 5. If we connect v1 and v4 with an edge, we have K2,3 as a snipped subgraph.
Connecting v1 and v5 with an edge gives C5 as a subgraph. Lastly, if we add an edge between v2
and v5 or v3 and v5 we have the bug as a subgraph. This tells us that if G contains graph (c) as a
strict subgraph, it will be d-infinite and accumulate C5.

Graph (d)

v1

v2

v3 v4

Lastly, we check the graph (d) case. If we add an edge between v1 and v3, the resulting graph is
K4 with a pendant edge off one vertex. The matching of this graph has K2,3 as a snipped subgraph.
Connecting v1 and v4 with an edge gives K2,3 as a subgraph. Finally, if we add an edge between
v2 and v4, we have C5 as a subgraph. Hence, any G with graph (d) as a strict subgraph will have
d(G) =∞ and accumulate C5.

This concludes the proof for the diameter 3 case. If G strictly contains any of graphs (a) through
(d) and G is not part of the family given in Figure 15, then it will have a snipped subgraph with
infinite d value which accumulates C5.

Lemma 4.8. Suppose G has a diameter of 2. If d(G) =∞, then G will accumulate C5. Further-
more, if d(G) is finite then G is one of the graphs in Figure 18.

C4 Bowtie Graph Sn

I II III

Figure 18: All graphs and families of graphs with a diameter of 2 which dissipate.

Proof. To start, we will prove the first part of the statement relating to d-infinite graphs. Suppose
that G has a diameter of 2 and an infinite d value. First, assume that G has at least one cycle. If
G has Cn where n ≥ 5, then G will have C5 as a snipped subgraph and by applying Lemma 2.11,
we know that G will accumulate C5. Now, suppose that G has C4 as a subgraph. We know d(C4)
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is finite and so G must strictly contain C4. It is straightforward to check that G must have one of
the graphs in Figure 19 as a subgraph if it has C4 as a strict subgraph and retains a diameter of 2.

(i) (ii) (iii) (iv)

Figure 19: If d(G) =∞, G has diameter 2, and C4 ( G, then G has one of these as a subgraph.

Immediately we see that graph (iii) has C5 as a subgraph. Also, we notice that graph (iv) is
K2,3. Hence, if G has either of these as a subgraph, then it will accumulate C5.

Both graph (i) and graph (ii) have a finite d value. Thus, if G has either as a subgraph, it must
be a strict subgraph because d(G) =∞. There are only a few ways to add edges to (i) and (ii) so
that they maintain a diameter of 2. Firstly, we could add edges to the C4 as we have done in graphs
(iii) or (iv). Either of these actions will reduce the case to what we have already studied and so G
will accumulate C5. Secondly, we could add edges to the C4 as we have done in both graph (i) and
graph (ii). This is shown in the following graph.

The matching graph of the above graph has K2,3 as a snipped subgraph. Thus, if G has this
above graph as a subgraph, then it will accumulate C5. There are no other ways to add edges to
graph (i) and preserve a diameter of 2 without reducing it to one of the other cases. So we need
only to consider adding edges in other ways to graph (ii). There are two actions which we have not
considered: adding more pendant edges to the vertex with one pendant or adding an edge between
the endpoints of two pendants.

However, once we have two or more pendants, G will have the bug as a subgraph. So in this case,
G will accumulate C5. We have now considered all the possibilities when G has C4 as a subgraph
and d(G) =∞, and in each one it accumulates C5.

Now, suppose that G has C3 as a subgraph. Again, C3 has a finite d value, so G must contain it
as a strict subgraph. It follows from straightforward casework that G must have one of the graphs
in Figure 20 as a subgraph.
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v1

(v) (vi) (vii)

Figure 20: If d(G) =∞, G has diameter 2, and C3 ( G, then G has one of these graphs as a
subgraph.

Notice that both graphs (vi) and (vii) have C4 as a subgraph. We have already seen that if G
has C4 as a subgraph, diameter 2, and d(G) =∞ then it will accumulate C5. Hence, we only need
to consider graph (v). This graph alone has a finite d value so if G contains it as a subgraph, graph
(v) must be a strict subgraph. The only ways to add edges to graph (v) without forming a C4 or
arriving at a diameter contradiction are to add pendants to vertex v1 or to add an edge between
the endpoints of two pendants. If G is C3 with only pendants off v1, it will have a finite d value.
If G is only the bowtie graph (see Figure 18), then it will also have a finite d value. However, if
G contains graph (viii) below as a subgraph, then d(G) = ∞ and G will accumulate C5, since the
matching graph of (viii) contains the stickman as a subgraph.

(viii)

Thus, we know that if G has diameter 2, d(G) = ∞, and G has C3 as subgraph, then it either
has graph (viii) as a subgraph or it must also have C4 as a subgraph. In all these cases, G will
accumulate C5.

Finally, we need to consider if G has no cycles. In this case, G must be a star graph. All star
graphs have a finite d value, namely d(Sn) = 2. Therefore, we have shown the desired result. All
graphs with a diameter of 2 and infinite d value must accumulate C5.

We now show that the graphs and families of graphs listed in Figure 18 are the only d-finite
graphs of diameter 2. Suppose G has diameter 2 and d(G) is finite. Now suppose, to start, that G
has at least one cycle. This cycle cannot be Cn for n ≥ 5 because G is d-finite. Consider first if G
has C4 as a subgraph. We note that C4 has finite d-value, as does graph (i) and graph (ii) from our
above casework in this proof. From that same casework we see any other graph with diameter 2 and
C4 as a subgraph will have infinite d-value. This gives us C4, graph I, and graph II in Figure 18.

Now suppose that G has C3 as a subgraph but not C4. If G is C3 itself then it does not have
diameter 2, which is a contradiction. Note that all graphs in the family given by graph (v) in
Figure 20 have finite d-value. This gives family III in the list of d-finite graphs with diameter 2
(Figure 18). We then need to consider any ways we can add edges to C3 without having C4 as a
subgraph or being in the family III while preserving finite d-value and diameter 2.

We consider how many C3 subgraphs can appear in our graph. Nowhere can we have two C3
subgraphs joined along an edge as we would then have C4 as a subgraph. If we only have one C3
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then our graph must be in the family of graphs from III in Figure 18. See that we cannot have
three (or more) C3 graphs joined at a single vertex, because in this case our graph would have
graph (viii) depicted above as a subgraph. We also cannot have any other combination of three or
more C3 graphs joined at different vertices. In such a graph, we have a path of length 5, a diameter
contradiction, or C4 as a subgraph, all of which are contradictions of our assumptions. We can,
though, have two C3 graphs joined at a vertex with no additional edges (this gives the bowtie graph
in Figure 18). We cannot have an additional pendant edge off the shared central vertex because
this would give graph (viii) above, which has infinite d value. We also cannot add an edge anywhere
else since every other addition gives a path of length five. Thus, we see this case only adds the
family of graphs in (v) (family III) and the bowtie graph.

Now suppose G has no cycle as a subgraph while still having diameter 2. This means that our
graph must be a star graph and have finite d-value. This gives the last family, Sn, in Figure 18.

5 Culminating Results
In Subsection 4.3, we showed that every connected d-infinite graph of diameter 2 or more will
accumulate C5 or N . In the following theorem, we will bring Lemmas 4.5, 4.6, 4.7, and 4.8 together
to show that every d-infinite graph accumulates C5 or N .

Theorem 5.1 (Accumulation Theorem). For any graph G, d(G) =∞ if and only if G accumulates
C5 or N .

Proof. First, suppose that G accumulates C5 or N . Then there is some k ≥ 1 such that Mk(G)
contains C5 or N as a subgraph. It follows directly from Corollary 2.13 that d(Mk(G)) = ∞ and
consequently, d(G) =∞.

Next, assume that G is d-infinite. We will show that it must accumulate C5 or N . Suppose
first that G is connected. We have already shown that the statement is true for a diameter of 2 or
more in Lemmas 4.5, 4.6, 4.7, and 4.8, so all that remains is when G has diameter 1. Notice that
if diam(G) = 1, then G = Kn for some n. If n < 5 then d(Kn) is finite as can be checked through
explicit calculation (see Figure 7). For n ≥ 5, we observe that Kn has C5 as a subgraph. Thus, if
G has diameter 1 and d(G) = ∞, it must have C5 as a subgraph. Therefore, if G is a connected
graph and d(G) =∞, then G accumulates C5 or N .

Now suppose G is not a connected graph. In particular say our connected components (of which
there are at least two) are {Hi}, such that Hi ∩Hj = ∅ if i 6= j and

⋃
i Hi = G. We will assume G

has no isolated vertices so each Hi contains at least one edge. We will now show that M(G) is a
connected graph. When we do this we will be able to use the argument from the first part of this
proof on M(G) and be done.

To see that M(G) is connected, we consider arbitrary vertices e1, e2 ∈ V (M(G)) and will show
that there is a path from e1 to e2. We have two cases to consider: either e1, e2 ∈ Hk for some k, or
e1 ∈ Hm and e2 ∈ Hn for m 6= n.

Consider our first case. Since we have at least two distinct connected components of G, say
Hk and Hj , both with at least one edge, we have a path from e1 to e2 in M(G) of length two. In
particular we have the path {(e1, ej), (ej , e2)} in M(G), where ej ∈ E(Hj). Now suppose we have
our second case. Then we see that e1 and e2 are actually adjacent in M(G). We thus see that
M(G) is a connected graph. This means M(G) accumulates C5 or N and so G does as well.
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Now that we know every d-infinite graph accumulates C5 or N , we can ask about the end
behavior of the sequence {Mk(G)} for a given graph G. We know that if G is C5 or N , then the
number of edges in Mk(G) will stay constant as k → ∞. But what happens for a d-infinite graph
which is not C5 or N? Is there such a G where the number of edges in Mk(G) is constant? Or is
there some G where MK(G) = G for K > 1, resulting in a cycle of iterated matching graphs? As
it turns out, the answer to both these questions is “no”. Every d-infinite graph which is not C5 or
N will grow without bound under the matching operation. We will spend the rest of this paper
proving this fascinating result.

Lemma 5.2. Suppose G has C5 or the net graph N as a strict subgraph, then |E(Mk(G))| → ∞
as k →∞.

Proof. First, suppose that G has C5 as a strict subgraph. Note that the number of edges in Mk(G)
cannot decrease. To see this, consider the following. Every edge in G must be non-incident to at
least one edge in the C5 because of the structure of C5. For example, see that we cannot place the
purple edge in Figure 21 so that it is incident with every edge. Hence, for each edge in G, we add at
least one edge to M(G). Therefore, |E(G)| ≤ |E(M(G))|. If G has C5 as a strict subgraph, M(G)
will as well and so we apply this logic iteratively to conclude |E(Mk(G))| ≤ |E(Mk+1(G))| for all
k ≥ 1. To show that the sequence is strictly increasing, we start by observing that if G has C5 as
a strict subgraph, then G must have the graph G0 depicted in Figure 21 as a snipped subgraph.

G0

Figure 21

Applying Lemma 2.4 iteratively, we can conclude that Mk(G0) ⊆ Mk(G) for all k ≥ 1. Thus,
if we show that |E(Mk(G0))| → ∞ as k →∞, then surely this will also be true for G.

The first and second matching graphs of G0 are shown in Figure 22. We observe that the
purple edge in M(G0) is non-incident to three other edges in M(G0). This accounts for the three
purple edges in M2(G0). Let H0 be a subgraph of M2(G0) containing the C5 and only one purple
edge; we see H0 is exactly M(G0) and so M2(G0) will be a subgraph of M3(G0). This gives
|E(M3(G0))| ≥ |E(M2(G0))|. Now, let E′ ⊆ E(M2(G0)) be the set of edges in M2(G0) which are
not in H0. Because of our discussion at the beginning of this proof, every edge in E′ must add at
least 1 to the total edge count of M3(G0). This gives

|E(M3(G0))| ≥ |E(M2(G0))|+ |E′| = |E(M2(G0))|+ 2.

Hence, |E(M3(G0))|− |E(M2(G0))| ≥ 2. Now, we can generalize this inequality for all Mk(G). We
know M(G0) will be a subgraph of M3(G0) because M(G0) ⊆M2(G0) ⊆M3(G0). We then apply
this logic iteratively to conclude that |E(Mk+1(G0))| − |E(Mk(G0))| ≥ 2 whenever k ≥ 1. Since
the number of edges in the kth matching graph of G0 is a strictly increasing sequence of natural
numbers, it must be unbounded. Hence, |E(Mk(G0))| → ∞ as k →∞.
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G0 M(G0) M2(G0)

Figure 22: Graph G0 and its first and second matching graphs

Now, suppose that G has N as a strict subgraph and consider the number of edges in M(G).
We know |E(M(G))| ≥ 6 because N ⊆ M(G). Now let E′ ⊆ E(G) be the set of edges in G which
are not in the subgraph N . Every edge e ∈ E′ must be non-incident to at least two edges in N ⊆ G
because of the structure of N . See that we cannot place the purple edge in Figure 23 so that it is
incident to more than four other edges. Hence, every e ∈ E′ will add at least 2 to the total edge
count of M(G). This means that

|E(M(G))| ≥ 2|E′|+ 6 = |E′|+ |E(G)|.

If G has N as a strict subgraph, then |E′| ≥ 1 and so we have |E(M(G))| − |E(G)| ≥ 1. Now,
we see that M(G) must have N as a strict subgraph and we apply this logic again. Following
this reasoning iteratively, we have |E(Mk+1(G))| − |E(Mk(G))| ≥ 1 for all k ≥ 1. So the number
of edges in Mk(G) is a strictly increasing sequence of natural numbers, implying that it must be
unbounded. Hence, we have |E(Mk(G))| → ∞ as k →∞.

Figure 23

Corollary 5.3. If G has C5 or the net graph N as a snipped subgraph and G 6= C5, G 6= N , then
|E(Mk(G))| → ∞ as k →∞.

Proof. If G has C5 as a snipped subgraph, then M(G) will have C5 as a subgraph by Lemma 2.11.
Assuming that G differs from C5 by more than isolated vertices, we know that M(G) 6= M(C5) =
C5. Hence, we conclude that M(G) has C5 as a strict subgraph. Applying Lemma 5.2, we come to
the desired conclusion. The same argument can be applied to N .

Theorem 5.4 (Exploding Graph Theorem). If G has infinite d-value and G is not C5 or the net
graph N , then |E(Mk(G))| → ∞ as k →∞.

Proof. Suppose that G is a graph and d(G) = ∞. Then, by the Accumulation Theorem (5.1), we
know that G accumulates C5 or the net graph N . Since G is not either of these graphs, there must
be some k such that Mk(G) has C5 or N as a strict subgraph. Hence, by Lemma 5.2, we know
that |E(Mk(G))| → ∞ as k →∞.
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Theorem 5.5. Mk(G) = G for some k iff M(G) = G iff G = C5 or G = N .

Proof. (Direction 1) Suppose M(G) = G. We clearly then see that Mk(G) = G for any k. Recall
from [Aig69] that this occurs iff G = C5 or G = N .

(Direction 2) Suppose that MK(G) = G for some positive integer K. For contradiction, assume
that G is not C5 or N . Because MK(G) = G we have d(G) = ∞. We then know that G will
accumulate C5 or N at some point by the Accumulation Theorem (5.1). By assumption, our graph
is not C5 or N so in fact G must accumulate C5 or N as a strict subgraph. By Lemma 5.2, we
see that the number of edges must increase without bound as we continue taking matching graphs.
This is then a contradiction because under our starting assumptions, we must have MnK(G) = G
for any positive integer n. We thus see that G = C5 or G = N . For both of these graphs we know
that M(C5) = C5 and M(N) = N . Hence, we must have M(G) = G. To finish, we just recall that
M(G) = G iff G = C5 or G = N from [Aig69].

Corollary 5.6. If a graph G is not C5 or the net graph, then there is no k ≥ 1 such that
Mk(G) = G.

The above is an immediate corollary of Theorem 5.5.
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