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Brief Polytope Introduction

(Convex) polytopes are geometric objects that can be defined as the
convex hull of finitely many points in R".

Definition

A subset P C R" is a d-dimensional lattice polytope if it is the convex hull
of finitely many points in Z" that span a d-dimensional affine subspace of
R".

P = conv {(1,0),(0,1),(—-2,-3)}
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Weighted Projective Space Simplices

Consider an integer partition q = (q1,...,qq) € Zle with the convention
g1 < .- < gg. The lattice simplex associated with q is

d
A(LQ) .= conv {el, 0005 Edly = E q,-e,-} 9
i=1

where e; denotes the ith standard basis vector in R,
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g1 < .- < gg. The lattice simplex associated with q is

d
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@ Simplices in Q correspond to a subset of simplices defining weighted
projective spaces:
- the vector (1, q) gives weights of projective coordinates of the
associated weighted projective space
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Weighted Projective Space Simplices

Consider an integer partition q = (q1,...,qq) € Zle with the convention
g1 < .- < gg. The lattice simplex associated with q is

d
A(LQ) .= conv {el, 0005 Edly = E q,-e,-} 9
i=1

where e; denotes the ith standard basis vector in R,

e Q = all lattice simplices of the form A )
@ Simplices in Q correspond to a subset of simplices defining weighted
projective spaces:
- the vector (1, q) gives weights of projective coordinates of the
associated weighted projective space

o Normalized Volume of Ay q): 1+, qi
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Useful Notation & Terminology

A natural parametrization on Q based on distinct entries:

@ Suppose q = (qu1,-..,qq) has t distinct entries given by
r:=(n,...,r) with multiplicities x := (x1,...,xt). Then,
a=1(91,--.,94) = (", ..., ).
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@ Suppose q = (qu1,-..,qq) has t distinct entries given by
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a=1(91,--.,94) = (", ..., ).

o We write q = (r,x) and say both q and A(; q) are supported by the
vector r with multiplicity x.
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Useful Notation & Terminology

A natural parametrization on Q based on distinct entries:

@ Suppose q = (qu1,-..,qq) has t distinct entries given by
r:=(n,...,r) with multiplicities x := (x1,...,xt). Then,
a=1(91,--.,94) = (", ..., ).

o We write q = (r,x) and say both q and A(; q) are supported by the
vector r with multiplicity x.

@ In this case, we say q and Ay q) are t-supported.
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Two Important Properties

Definition
A lattice polytope P is reflexive if, possibly after translation by an integer
vector, the origin is contained in P° and its geometric dual (or polar body)

P*:={xeR"|x-y<1lforallye P}

is also a lattice polytope. (Here, P° denotes the topological interior of P.)
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Definition
A lattice polytope P is reflexive if, possibly after translation by an integer
vector, the origin is contained in P° and its geometric dual (or polar body)

P*:={xeR"|x-y<1forally € P}

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

v

Definition

A lattice polytope P C R” has the integer decomposition property (or is
IDP) if, for every integer t € Z~¢ and for all p € tP NZ", there exists
Pi,...,Pt € PNZ" such that p=p1 + - + p:.
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Two Important Properties

Definition
A lattice polytope P is reflexive if, possibly after translation by an integer
vector, the origin is contained in P° and its geometric dual (or polar body)

P*:={xeR"|x-y<1forally € P}

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

v

Definition

A lattice polytope P C R” has the integer decomposition property (or is
IDP) if, for every integer t € Z~¢ and for all p € tP NZ", there exists
Pi,...,Pt € PNZ" such that p=p1 + - + p:.

We will be interested in A(q q) that are simultaneously IDP and reflexive.
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Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount
of study on the Ehrhart theory of lattice polytopes.

@ Ehrhart theory: lattice point enumeration of dilates of polytopes

e What geometric properties of P are necessary/sufficient for h*(P; z)
to be symmetric, unimodal, etc?
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Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount
of study on the Ehrhart theory of lattice polytopes.

@ Ehrhart theory: lattice point enumeration of dilates of polytopes

e What geometric properties of P are necessary/sufficient for h*(P; z)
to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal
Ehrhart h*-polynomial.

Lattice simplices have been shown to form a rich testing ground of
examples with which to vet this conjecture.

o Leverage algebraic/geometric properties of special classes
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Project I: Triangulations of 2-Supported A q)

Definition

Let A C R? be a point configuration. A triangulation T of A is unimodular
if every simplex has normalized volume one. We say 7T is regular if it can
be obtained by projecting the lower envelope of a lifting of A from RI+1.
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Motivation: 2-Supported A(; q) Triangulations

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If A(1,q) is 2-supported and IDP reflexive, then A q) has a unimodal
Ehrhart h*-vector.

Theorem (Bruns-Rémer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has
a unimodal Ehrhart h*-vector.
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Motivation: 2-Supported A(; q) Triangulations

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If A(1,q) is 2-supported and IDP reflexive, then A q) has a unimodal
Ehrhart h*-vector.

Theorem (Bruns-Rémer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has
a unimodal Ehrhart h*-vector.

Thus, it is of interest to determine if IDP reflexive lattice polytopes admit
regular unimodular triangulations.

D. Hanely Weighted Projective Space Simplices 10-9-21 9/18



2-Supported A q) (cont.)

Theorem (Braun-Davis-Solus, 2016)

Suppose q is 2-supported. The simplex Ay q) is IDP reflexive if and only if
q is of the form (r;*, r;?) where either

Q@ n =1 withrn =1+ x3 and xp arbitrary, or
Q@ rn>1withrn=1+nrx andx; =r —1.
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2-Supported A q) (cont.)

Theorem (Braun-Davis-Solus, 2016)

Suppose q is 2-supported. The simplex Ay q) is IDP reflexive if and only if
q is of the form (r;*, r;?) where either

Q@ n =1 withrn =1+ x3 and xp arbitrary, or

Q@ rn>1withrn=1+nrx andx; =r —1.

@ Goal: establish a regular unimodular triangulation of the point
configuration formed by the lattice points of Ay q) in case (2).
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Lattice Point Characterization

Define A = {a1,...,a,13,b1,...,bg} C Z9, where

an+1 = (=1, (=x)" ),
an2 = (09, (=1)"71),
an+3 = (04,0771),
ai=(n—i+layt1+ap4oforl<i<n
bi=eq_ji1 for1 << d
Example:
For g = (2,3),

A= {(_27 _3)7 (_17 _2)7 (_17 _1)7 (O, —1), (07 0)7 (07 1)7 (1, O)}

Theorem (Braun-H., 2020)
The lattice points of the 2-supported IDP simplex Ay q) are given by A.
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2-Supported IDP Reflexive A(; q) Admit a Regular

Unimodular Triangulation

Theorem (Braun-H., 2020)

There exists a lexicographic squarefree initial ideal of the toric ideal
associated with A.

Corollary

Assume q = (r%, (1 4+ rnix1)" 1) with 1 > 1. The convex polytope
A(1,q) = conv { A} admits a regular unimodular triangulation induced by
the lexicographic term order < jey.
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Project Il: 3-Supported A q)

@ Purpose: Extend known results for 1- and 2-supported A(; q) to the
3-supported case
o Provide a complete characterization of 3-supported IDP reflexive A q
e Explore Ehrhart unimodality
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Foundational IDP Result

Theorem (Braun-Davis-Solus, 2016)

The reflexive simplex Ay q) is IDP if and only if for every j=1,...,n and
forallb=1,...,q; — 1 satisfying

(2u0) |

iz Y
there exists a positive integer ¢ < b satisfying the following equations:
2] [)-[]-
qj qj qj
(LEme) s,
qj 2 L9
i#]
where the first is considered for all 1 < i < n with i # j.

D. Hanely Weighted Projective Space Simplices 10-9-21 14 /18



IDP Result (cont.)

Corollary

If A q) Is reflexive and IDP, then for all j=1,2,...,n,

,q)

n
1+ Z(q,- mod qj) = qj
i=1
or equivalently

n
1+ Zx,-(r,- mod r;) = rj.
i=1
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IDP Result (cont.)

Corollary

If A q) Is reflexive and IDP, then for all j=1,2,...,n,

,q)

n
1+ Z(q,- mod qj) = qj
i=1
or equivalently

n
1+ Zx,-(r,- mod r;) = rj.
i=1

Any q satisfying these equations for all j is said to satisfy the necessary
condition for IDP.
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Stratify by Multiplicity Instead of Support

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

Consider a 3-supported vector q = (r,x) such that A q) Satisfies the necessary
condition for IDP. If x = (x1,x2,x3), then r is of one of the following forms:

(i) r=(1,14 x1, (1 +x1)(1 + x2)).
(i) r=(14+x,14+x(14+x2), (1 +x(1+x))(1+ x)).
(i) ¥ = (14 2)(1+x5) 1+ x1(L+x)(1+ ), (1 +x(1 +2)(1 +x8))(1 +x2)).

(v) 14+ (14x3)x2, (14+x3)(1+x1(1+(1+x3)x2)), (L+(1+ (1 +x3)x2)x1)(1+ (1 +x3)x2)).

(vi) (14 x3)(1 4+ (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), (L + (1 + x3)(1 +
(14 x3)x2)x1)(1 + (1 + x3)x2)).

(il) 1= (1455, (14 xs)(L +sa(L+ 1)), (1 + (L +sa)x)(L + (1 + x3)2)).

(viii) There exists some k,s > 1, where

P=(
r=(
r=(
(iv) r=(1,(1+x1)(1+x3), (1 + x1)(1 + x2(1 + x3))).
r=(
F=(

r= (14 kxo, (skxa + s + k)(1 + x1(1 + kx2)), (1 + x1(1 + kx2))(1 + x2(skx2 + s + k))),
X = (X].,X2,5kx2+57k+1).

Further, the first seven r-vectors produce IDP A q)'s, while (viii) does not.
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Unimodality in the IDP Reflexive Case

Ifq is a 1- or 2-supported vector yielding an IDP reflexive A q), then
A(1,q) s h*-unimodal.
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Unimodality in the IDP Reflexive Case

Ifq is a 1- or 2-supported vector yielding an IDP reflexive A q), then
A(1,q) s h*-unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For x = (x1, X2, x3) a positive integer vector, if q = (r,x) where r is one of
the following forms, then Ay q) is h*-unimodal.

) 1 = (L, 1=k 0, (0 4o 5 ) 4 )
(II) r—= (].—|—X2,]_+X1(1 —|—X2),(1—|—X1(1—|—X2))(1—I—Xg)).
(iv) r=(1,(1+ x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

D. Hanely Weighted Projective Space Simplices 10-9-21 17 /18



Unimodality in the IDP Reflexive Case

Ifq is a 1- or 2-supported vector yielding an IDP reflexive A q), then
A(1,q) s h*-unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For x = (x1, X2, x3) a positive integer vector, if q = (r,x) where r is one of
the following forms, then Ay q) is h*-unimodal.

) 1 = (L, 1=k 0, (0 4o 5 ) 4 )
(II) r—= (].—|—X2,]_+X1(1 —|—X2),(1—|—X1(1—|—X2))(1—I—Xg)).
(iv) r=(1,(1+ x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

Experimental evidence suggests the remaining four cases are also
h*-unimodal.

D. Hanely Weighted Projective Space Simplices 10-9-21 17 /18



Thank You!

Questions?

2-Supported A(; q) Preprint: https://arxiv.org/abs/2010.13720
3-Supported Ay q) Preprint: https://arxiv.org/abs/2103.17156
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