Geometric Properties of Weighted Projective Space Simplices

Derek Hanely

University of Kentucky

October 9, 2021

10-9-21 1 / 18

This work is joint with:

- Benjamin Braun (University of Kentucky)
- Rob Davis (Colgate University)
- Morgan Lane (Martha Layne Collins High School)
- Liam Solus (KTH)

Brief Polytope Introduction

(Convex) polytopes are geometric objects that can be defined as the convex hull of finitely many points in \mathbb{R}^n .

Definition

A subset $P \subseteq \mathbb{R}^n$ is a *d*-dimensional lattice polytope if it is the convex hull of finitely many points in \mathbb{Z}^n that span a *d*-dimensional affine subspace of \mathbb{R}^n .

Definition

Consider an integer partition $\mathbf{q} = (q_1, \ldots, q_d) \in \mathbb{Z}_{\geq 1}^d$ with the convention $q_1 \leq \cdots \leq q_d$. The lattice simplex associated with \mathbf{q} is

$$\Delta_{(1,\mathbf{q})} := \operatorname{conv} \left\{ \mathbf{e}_1, \dots, \mathbf{e}_d, -\sum_{i=1}^d q_i \mathbf{e}_i \right\},$$

where \mathbf{e}_i denotes the *i*th standard basis vector in \mathbb{R}^d .

Definition

Consider an integer partition $\mathbf{q} = (q_1, \ldots, q_d) \in \mathbb{Z}_{\geq 1}^d$ with the convention $q_1 \leq \cdots \leq q_d$. The lattice simplex associated with \mathbf{q} is

$$\Delta_{(1,\mathbf{q})} := \operatorname{conv} \left\{ \mathbf{e}_1, \dots, \mathbf{e}_d, -\sum_{i=1}^d q_i \mathbf{e}_i \right\},$$

where \mathbf{e}_i denotes the *i*th standard basis vector in \mathbb{R}^d .

• $\mathcal{Q} =$ all lattice simplices of the form $\Delta_{(1,\mathbf{q})}$

Definition

Consider an integer partition $\mathbf{q} = (q_1, \ldots, q_d) \in \mathbb{Z}_{\geq 1}^d$ with the convention $q_1 \leq \cdots \leq q_d$. The lattice simplex associated with \mathbf{q} is

$$\Delta_{(1,\mathbf{q})} := \operatorname{conv} \left\{ \mathbf{e}_1, \dots, \mathbf{e}_d, -\sum_{i=1}^d q_i \mathbf{e}_i
ight\},$$

where \mathbf{e}_i denotes the *i*th standard basis vector in \mathbb{R}^d .

- Q = all lattice simplices of the form $\Delta_{(1,q)}$
- Simplices in Q correspond to a subset of simplices defining weighted projective spaces:
 - the vector $(1, \mathbf{q})$ gives weights of projective coordinates of the associated weighted projective space

Definition

Consider an integer partition $\mathbf{q} = (q_1, \ldots, q_d) \in \mathbb{Z}_{\geq 1}^d$ with the convention $q_1 \leq \cdots \leq q_d$. The lattice simplex associated with \mathbf{q} is

$$\Delta_{(1,\mathbf{q})} := \operatorname{conv} \left\{ \mathbf{e}_1, \dots, \mathbf{e}_d, -\sum_{i=1}^d q_i \mathbf{e}_i
ight\},$$

where \mathbf{e}_i denotes the *i*th standard basis vector in \mathbb{R}^d .

- Q = all lattice simplices of the form $\Delta_{(1,q)}$
- Simplices in Q correspond to a subset of simplices defining weighted projective spaces:
 - the vector $(1, {\bm q})$ gives weights of projective coordinates of the associated weighted projective space
- Normalized Volume of $\Delta_{(1,\mathbf{q})}$: $1 + \sum_i q_i$

A natural parametrization on $\mathcal Q$ based on distinct entries:

• Suppose $\mathbf{q} = (q_1, \dots, q_d)$ has t distinct entries given by $\mathbf{r} := (r_1, \dots, r_t)$ with multiplicities $\mathbf{x} := (x_1, \dots, x_t)$. Then, $\mathbf{q} = (q_1, \dots, q_d) = (r_1^{x_1}, \dots, r_t^{x_t})$.

A natural parametrization on $\mathcal Q$ based on distinct entries:

- Suppose $\mathbf{q} = (q_1, \dots, q_d)$ has t distinct entries given by $\mathbf{r} := (r_1, \dots, r_t)$ with multiplicities $\mathbf{x} := (x_1, \dots, x_t)$. Then, $\mathbf{q} = (q_1, \dots, q_d) = (r_1^{x_1}, \dots, r_t^{x_t})$.
- We write $\mathbf{q} = (\mathbf{r}, \mathbf{x})$ and say both \mathbf{q} and $\Delta_{(1,\mathbf{q})}$ are supported by the vector \mathbf{r} with multiplicity \mathbf{x} .

A natural parametrization on $\mathcal Q$ based on distinct entries:

- Suppose $\mathbf{q} = (q_1, \dots, q_d)$ has t distinct entries given by $\mathbf{r} := (r_1, \dots, r_t)$ with multiplicities $\mathbf{x} := (x_1, \dots, x_t)$. Then, $\mathbf{q} = (q_1, \dots, q_d) = (r_1^{x_1}, \dots, r_t^{x_t})$.
- We write q = (r, x) and say both q and Δ_(1,q) are supported by the vector r with multiplicity x.
- In this case, we say **q** and $\Delta_{(1,\mathbf{q})}$ are *t*-supported.

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$P^* := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} \le 1 \text{ for all } \mathbf{y} \in P \}$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$P^* := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} \le 1 \text{ for all } \mathbf{y} \in P \}$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

Definition

A lattice polytope $P \subseteq \mathbb{R}^n$ has the integer decomposition property (or is IDP) if, for every integer $t \in \mathbb{Z}_{>0}$ and for all $\mathbf{p} \in tP \cap \mathbb{Z}^n$, there exists $\mathbf{p}_1, \ldots, \mathbf{p}_t \in P \cap \mathbb{Z}^n$ such that $\mathbf{p} = \mathbf{p}_1 + \cdots + \mathbf{p}_t$.

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$P^* := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} \le 1 \text{ for all } \mathbf{y} \in P \}$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

Definition

A lattice polytope $P \subseteq \mathbb{R}^n$ has the integer decomposition property (or is IDP) if, for every integer $t \in \mathbb{Z}_{>0}$ and for all $\mathbf{p} \in tP \cap \mathbb{Z}^n$, there exists $\mathbf{p}_1, \ldots, \mathbf{p}_t \in P \cap \mathbb{Z}^n$ such that $\mathbf{p} = \mathbf{p}_1 + \cdots + \mathbf{p}_t$.

We will be interested in $\Delta_{(1,q)}$ that are simultaneously IDP and reflexive.

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of *P* are necessary/sufficient for $h^*(P; z)$ to be symmetric, unimodal, etc?

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of *P* are necessary/sufficient for $h^*(P; z)$ to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal Ehrhart h^* -polynomial.

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of *P* are necessary/sufficient for $h^*(P; z)$ to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal Ehrhart h^* -polynomial.

Lattice simplices have been shown to form a rich testing ground of examples with which to vet this conjecture.

• Leverage algebraic/geometric properties of special classes

Let $\mathbf{A} \subseteq \mathbb{R}^d$ be a point configuration. A *triangulation* \mathcal{T} of \mathbf{A} is unimodular if every simplex has normalized volume one. We say \mathcal{T} is *regular* if it can be obtained by projecting the lower envelope of a lifting of \mathbf{A} from \mathbb{R}^{d+1} .

Theorem

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If $\Delta_{(1,q)}$ is 2-supported and IDP reflexive, then $\Delta_{(1,q)}$ has a unimodal Ehrhart h*-vector.

Theorem (Bruns-Römer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has a unimodal Ehrhart h^* -vector.

Theorem

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If $\Delta_{(1,q)}$ is 2-supported and IDP reflexive, then $\Delta_{(1,q)}$ has a unimodal Ehrhart h*-vector.

Theorem (Bruns-Römer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has a unimodal Ehrhart h^* -vector.

Thus, it is of interest to determine if IDP reflexive lattice polytopes admit regular unimodular triangulations.

Theorem (Braun-Davis-Solus, 2016)

Suppose **q** is 2-supported. The simplex $\Delta_{(1,\mathbf{q})}$ is IDP reflexive if and only if **q** is of the form $(r_1^{x_1}, r_2^{x_2})$ where either

$${f 0}$$
 $r_1=1$ with $r_2=1+x_1$ and x_2 arbitrary, or

2
$$r_1 > 1$$
 with $r_2 = 1 + r_1 x_1$ and $x_2 = r_1 - 1$.

Theorem (Braun-Davis-Solus, 2016)

Suppose **q** is 2-supported. The simplex $\Delta_{(1,\mathbf{q})}$ is IDP reflexive if and only if **q** is of the form $(r_1^{x_1}, r_2^{x_2})$ where either

$${f 0}$$
 $r_1=1$ with $r_2=1+x_1$ and x_2 arbitrary, or

2
$$r_1 > 1$$
 with $r_2 = 1 + r_1 x_1$ and $x_2 = r_1 - 1$.

 <u>Goal</u>: establish a regular unimodular triangulation of the point configuration formed by the lattice points of Δ_(1,q) in case (2).

Lattice Point Characterization

Define
$$\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_{r_1+3}, \mathbf{b}_1, \dots, \mathbf{b}_d\} \subset \mathbb{Z}^d$$
, where
 $\mathbf{a}_{r_1+1} = ((-1)^{x_1}, (-x_1)^{r_1-1}),$
 $\mathbf{a}_{r_1+2} = (0^{x_1}, (-1)^{r_1-1}),$
 $\mathbf{a}_{r_1+3} = (0^{x_1}, 0^{r_1-1}),$
 $\mathbf{a}_i = (r_1 - i + 1)\mathbf{a}_{r_1+1} + \mathbf{a}_{r_1+2} \text{ for } 1 \le i \le r_1$
 $\mathbf{b}_j = \mathbf{e}_{d-j+1} \text{ for } 1 \le j \le d$

Example: For $\mathbf{q} = (2, 3)$, $\mathcal{A} = \{(-2, -3), (-1, -2), (-1, -1), (0, -1), (0, 0), (0, 1), (1, 0)\}$

Theorem (Braun-H., 2020)

The lattice points of the 2-supported IDP simplex $\Delta_{(1,q)}$ are given by \mathcal{A} .

2-Supported IDP Reflexive $\Delta_{(1,\textbf{q})}$ Admit a Regular Unimodular Triangulation

Theorem (Braun-H., 2020)

There exists a lexicographic squarefree initial ideal of the toric ideal associated with A.

Corollary

Assume $\mathbf{q} = (r_1^{x_1}, (1 + r_1x_1)^{r_1-1})$ with $r_1 > 1$. The convex polytope $\Delta_{(1,\mathbf{q})} = \operatorname{conv} \{\mathcal{A}\}$ admits a regular unimodular triangulation induced by the lexicographic term order $<_{lex}$.

- \bullet Purpose: Extend known results for 1- and 2-supported $\Delta_{(1,\boldsymbol{q})}$ to the 3-supported case
 - Provide a complete characterization of 3-supported IDP reflexive $\Delta_{(1,q)}$
 - Explore Ehrhart unimodality

Theorem (Braun-Davis-Solus, 2016)

The reflexive simplex $\Delta_{(1,q)}$ is IDP if and only if for every j = 1, ..., n and for all $b = 1, ..., q_j - 1$ satisfying

$$b\left(rac{1+\sum_{i
eq j} q_i}{q_j}
ight) - \sum_{i
eq j} \left\lfloorrac{bq_i}{q_j}
ight
floor \geq 2,$$

there exists a positive integer c < b satisfying the following equations:

$$egin{aligned} &\left\lfloor rac{bq_i}{q_j}
ight
floor - \left\lfloor rac{cq_i}{q_j}
ight
floor = \left\lfloor rac{(b-c)q_i}{q_j}
ight
floor, ext{ and } \ &c\left(rac{1+\sum_{i
eq j}q_i}{q_j}
ight) - \sum_{i
eq i} \left\lfloor rac{cq_i}{q_j}
ight
floor = 1, \end{aligned}$$

where the first is considered for all $1 \le i \le n$ with $i \ne j$.

Corollary

If $\Delta_{(1,q)}$ is reflexive and IDP, then for all j = 1, 2, ..., n,

$$1+\sum_{i=1}^n(q_i \bmod q_j)=q_j$$

or equivalently

$$1+\sum_{i=1}^n x_i(r_i \bmod r_j)=r_j.$$

Corollary

If $\Delta_{(1,q)}$ is reflexive and IDP, then for all j = 1, 2, ..., n,

$$1+\sum_{i=1}^n(q_i \bmod q_j)=q_j$$

or equivalently

$$1+\sum_{i=1}^n x_i(r_i \bmod r_j)=r_j.$$

Any **q** satisfying these equations for all j is said to satisfy the necessary condition for IDP.

Stratify by Multiplicity Instead of Support

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

Consider a 3-supported vector $\mathbf{q} = (\mathbf{r}, \mathbf{x})$ such that $\Delta_{(1,\mathbf{q})}$ satisfies the necessary condition for IDP. If $\mathbf{x} = (x_1, x_2, x_3)$, then \mathbf{r} is of one of the following forms: (i) $\mathbf{r} = (1, 1 + x_1, (1 + x_1)(1 + x_2))$.

(ii)
$$\mathbf{r} = (1 + x_2, 1 + x_1(1 + x_2), (1 + x_1(1 + x_2))(1 + x_2))$$

(iii)
$$\mathbf{r} = ((1+x_2)(1+x_3), 1+x_1(1+x_2)(1+x_3), (1+x_1(1+x_2)(1+x_3))(1+x_2)).$$

(iv)
$$\mathbf{r} = (1, (1+x_1)(1+x_3), (1+x_1)(1+x_2(1+x_3))).$$

(v)
$$\mathbf{r} = (1 + (1 + x_3)x_2, (1 + x_3)(1 + x_1(1 + (1 + x_3)x_2)), (1 + (1 + (1 + x_3)x_2)x_1)(1 + (1 + x_3)x_2)).$$

(vi)
$$\mathbf{r} = ((1+x_3)(1+(1+x_3)x_2), (1+x_3)(1+x_1(1+x_3)(1+(1+x_3)x_2)), (1+(1+x_3)(1+(1+x_3)x_2)), (1+(1+x_3)x_2)).$$

(vii)
$$\mathbf{r} = (1 + x_3, (1 + x_3)(1 + x_1(1 + x_3)), (1 + (1 + x_3)x_1)(1 + (1 + x_3)x_2)).$$

(viii) There exists some $k, s \ge 1$, where

$$\mathbf{r} = (1 + kx_2, (skx_2 + s + k)(1 + x_1(1 + kx_2)), (1 + x_1(1 + kx_2))(1 + x_2(skx_2 + s + k))),$$

$$\mathbf{x} = (x_1, x_2, skx_2 + s - k + 1).$$

Further, the first seven **r**-vectors produce IDP $\Delta_{(1,q)}$'s, while (viii) does not.

Unimodality in the IDP Reflexive Case

Theorem

If **q** is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1,q)}$, then $\Delta_{(1,q)}$ is h^{*}-unimodal.

Theorem

If **q** is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1,q)}$, then $\Delta_{(1,q)}$ is h^* -unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For $\mathbf{x} = (x_1, x_2, x_3)$ a positive integer vector, if $\mathbf{q} = (\mathbf{r}, \mathbf{x})$ where \mathbf{r} is one of the following forms, then $\Delta_{(1,\mathbf{q})}$ is h^* -unimodal. (i) $\mathbf{r} = (1, 1 + x_1, (1 + x_1)(1 + x_2))$. (ii) $\mathbf{r} = (1 + x_2, 1 + x_1(1 + x_2), (1 + x_1(1 + x_2))(1 + x_2))$.

(iv)
$$\mathbf{r} = (1, (1+x_1)(1+x_3), (1+x_1)(1+x_2(1+x_3))).$$

Theorem

If **q** is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1,\mathbf{q})}$, then $\Delta_{(1,\mathbf{q})}$ is h^* -unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For $\mathbf{x} = (x_1, x_2, x_3)$ a positive integer vector, if $\mathbf{q} = (\mathbf{r}, \mathbf{x})$ where \mathbf{r} is one of the following forms, then $\Delta_{(1,\mathbf{q})}$ is h^* -unimodal. (i) $\mathbf{r} = (1, 1 + x_1, (1 + x_1)(1 + x_2))$.

(ii) $\mathbf{r} = (1 + x_2, 1 + x_1(1 + x_2), (1 + x_1(1 + x_2))(1 + x_2)).$

(iv)
$$\mathbf{r} = (1, (1+x_1)(1+x_3), (1+x_1)(1+x_2(1+x_3))).$$

Experimental evidence suggests the remaining four cases are also h^* -unimodal.

Questions?

2-Supported $\Delta_{(1,q)}$ Preprint: https://arxiv.org/abs/2010.13720 3-Supported $\Delta_{(1,q)}$ Preprint: https://arxiv.org/abs/2103.17156