Geometric Properties of Weighted Projective Space Simplices

Derek Hanely

University of Kentucky
October 9, 2021

Collaborators

This work is joint with:

- Benjamin Braun (University of Kentucky)
- Rob Davis (Colgate University)
- Morgan Lane (Martha Layne Collins High School)
- Liam Solus (KTH)

Brief Polytope Introduction

(Convex) polytopes are geometric objects that can be defined as the convex hull of finitely many points in \mathbb{R}^{n}.

Definition

A subset $P \subseteq \mathbb{R}^{n}$ is a d-dimensional lattice polytope if it is the convex hull of finitely many points in \mathbb{Z}^{n} that span a d-dimensional affine subspace of \mathbb{R}^{n}.

$$
P=\operatorname{conv}\{(1,0),(0,1),(-2,-3)\}
$$

Weighted Projective Space Simplices

Definition

Consider an integer partition $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{\geq 1}^{d}$ with the convention $q_{1} \leq \cdots \leq q_{d}$. The lattice simplex associated with \mathbf{q} is

$$
\Delta_{(1, \mathbf{q})}:=\operatorname{conv}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},-\sum_{i=1}^{d} q_{i} \mathbf{e}_{i}\right\}
$$

where \mathbf{e}_{i} denotes the i th standard basis vector in \mathbb{R}^{d}.

Weighted Projective Space Simplices

Definition

Consider an integer partition $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{\geq 1}^{d}$ with the convention $q_{1} \leq \cdots \leq q_{d}$. The lattice simplex associated with \mathbf{q} is

$$
\Delta_{(1, \mathbf{q})}:=\operatorname{conv}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},-\sum_{i=1}^{d} q_{i} \mathbf{e}_{i}\right\}
$$

where \mathbf{e}_{i} denotes the i th standard basis vector in \mathbb{R}^{d}.

- $\mathcal{Q}=$ all lattice simplices of the form $\Delta_{(1, \mathbf{q})}$

Weighted Projective Space Simplices

Definition

Consider an integer partition $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{\geq 1}^{d}$ with the convention $q_{1} \leq \cdots \leq q_{d}$. The lattice simplex associated with \mathbf{q} is

$$
\Delta_{(1, \mathbf{q})}:=\operatorname{conv}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},-\sum_{i=1}^{d} q_{i} \mathbf{e}_{i}\right\}
$$

where \mathbf{e}_{i} denotes the i th standard basis vector in \mathbb{R}^{d}.

- $\mathcal{Q}=$ all lattice simplices of the form $\Delta_{(1, \mathbf{q})}$
- Simplices in \mathcal{Q} correspond to a subset of simplices defining weighted projective spaces:
- the vector $(1, \mathbf{q})$ gives weights of projective coordinates of the associated weighted projective space

Weighted Projective Space Simplices

Definition

Consider an integer partition $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{\geq 1}^{d}$ with the convention $q_{1} \leq \cdots \leq q_{d}$. The lattice simplex associated with \mathbf{q} is

$$
\Delta_{(1, \mathbf{q})}:=\operatorname{conv}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},-\sum_{i=1}^{d} q_{i} \mathbf{e}_{i}\right\}
$$

where \mathbf{e}_{i} denotes the i th standard basis vector in \mathbb{R}^{d}.

- $\mathcal{Q}=$ all lattice simplices of the form $\Delta_{(1, \mathbf{q})}$
- Simplices in \mathcal{Q} correspond to a subset of simplices defining weighted projective spaces:
- the vector $(1, \mathbf{q})$ gives weights of projective coordinates of the associated weighted projective space
- Normalized Volume of $\Delta_{(1, \mathbf{q})}: 1+\sum_{i} q_{i}$

Useful Notation \& Terminology

A natural parametrization on \mathcal{Q} based on distinct entries:

- Suppose $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)$ has t distinct entries given by $\mathbf{r}:=\left(r_{1}, \ldots, r_{t}\right)$ with multiplicities $\mathbf{x}:=\left(x_{1}, \ldots, x_{t}\right)$. Then, $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)=\left(r_{1}^{\chi_{1}}, \ldots, r_{t}^{\chi_{t}}\right)$.

Useful Notation \& Terminology

A natural parametrization on \mathcal{Q} based on distinct entries:

- Suppose $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)$ has t distinct entries given by $\mathbf{r}:=\left(r_{1}, \ldots, r_{t}\right)$ with multiplicities $\mathbf{x}:=\left(x_{1}, \ldots, x_{t}\right)$. Then, $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)=\left(r_{1}^{\chi_{1}}, \ldots, r_{t}^{\chi_{t}}\right)$.
- We write $\mathbf{q}=(\mathbf{r}, \mathbf{x})$ and say both \mathbf{q} and $\Delta_{(1, \mathbf{q})}$ are supported by the vector \mathbf{r} with multiplicity \mathbf{x}.

Useful Notation \& Terminology

A natural parametrization on \mathcal{Q} based on distinct entries:

- Suppose $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)$ has t distinct entries given by $\mathbf{r}:=\left(r_{1}, \ldots, r_{t}\right)$ with multiplicities $\mathbf{x}:=\left(x_{1}, \ldots, x_{t}\right)$. Then, $\mathbf{q}=\left(q_{1}, \ldots, q_{d}\right)=\left(r_{1}^{\chi_{1}}, \ldots, r_{t}^{\chi_{t}}\right)$.
- We write $\mathbf{q}=(\mathbf{r}, \mathbf{x})$ and say both \mathbf{q} and $\Delta_{(1, \mathbf{q})}$ are supported by the vector \mathbf{r} with multiplicity \mathbf{x}.
- In this case, we say \mathbf{q} and $\Delta_{(1, \mathbf{q})}$ are t-supported.

Two Important Properties

Definition

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$
P^{*}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y} \leq 1 \text { for all } \mathbf{y} \in P\right\}
$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

Two Important Properties

Definition

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$
P^{*}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y} \leq 1 \text { for all } \mathbf{y} \in P\right\}
$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

Definition

A lattice polytope $P \subseteq \mathbb{R}^{n}$ has the integer decomposition property (or is IDP) if, for every integer $t \in \mathbb{Z}_{>0}$ and for all $\mathbf{p} \in t P \cap \mathbb{Z}^{n}$, there exists $\mathbf{p}_{1}, \ldots, \mathbf{p}_{t} \in P \cap \mathbb{Z}^{n}$ such that $\mathbf{p}=\mathbf{p}_{1}+\cdots+\mathbf{p}_{t}$.

Two Important Properties

Definition

A lattice polytope P is reflexive if, possibly after translation by an integer vector, the origin is contained in P° and its geometric dual (or polar body)

$$
P^{*}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y} \leq 1 \text { for all } \mathbf{y} \in P\right\}
$$

is also a lattice polytope. (Here, P° denotes the topological interior of P.)

Definition

A lattice polytope $P \subseteq \mathbb{R}^{n}$ has the integer decomposition property (or is IDP) if, for every integer $t \in \mathbb{Z}_{>0}$ and for all $\mathbf{p} \in t P \cap \mathbb{Z}^{n}$, there exists $\mathbf{p}_{1}, \ldots, \mathbf{p}_{t} \in P \cap \mathbb{Z}^{n}$ such that $\mathbf{p}=\mathbf{p}_{1}+\cdots+\mathbf{p}_{t}$.

We will be interested in $\Delta_{(1, \mathbf{q})}$ that are simultaneously IDP and reflexive.

Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of P are necessary/sufficient for $h^{*}(P ; z)$ to be symmetric, unimodal, etc?

Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of P are necessary/sufficient for $h^{*}(P ; z)$ to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal Ehrhart h^{*}-polynomial.

Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount of study on the Ehrhart theory of lattice polytopes.

- Ehrhart theory: lattice point enumeration of dilates of polytopes
- What geometric properties of P are necessary/sufficient for $h^{*}(P ; z)$ to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal Ehrhart h^{*}-polynomial.

Lattice simplices have been shown to form a rich testing ground of examples with which to vet this conjecture.

- Leverage algebraic/geometric properties of special classes

Project I: Triangulations of 2-Supported $\Delta_{(1, \mathbf{q})}$

Definition

Let $\mathbf{A} \subseteq \mathbb{R}^{d}$ be a point configuration. A triangulation \mathcal{T} of \mathbf{A} is unimodular if every simplex has normalized volume one. We say \mathcal{T} is regular if it can be obtained by projecting the lower envelope of a lifting of \mathbf{A} from \mathbb{R}^{d+1}.

Motivation: 2-Supported $\Delta_{(1, \mathbf{q})}$ Triangulations

Theorem

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If $\Delta_{(1, \mathbf{q})}$ is 2-supported and IDP reflexive, then $\Delta_{(1, \mathbf{q})}$ has a unimodal Ehrhart h^{*}-vector.

Theorem (Bruns-Römer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has a unimodal Ehrhart h^{*}-vector.

Motivation: 2-Supported $\Delta_{(1, \mathbf{q})}$ Triangulations

Theorem

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If $\Delta_{(1, \mathbf{q})}$ is 2-supported and IDP reflexive, then $\Delta_{(1, \mathbf{q})}$ has a unimodal Ehrhart h^{*}-vector.

Theorem (Bruns-Römer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has a unimodal Ehrhart h^{*}-vector.

Thus, it is of interest to determine if IDP reflexive lattice polytopes admit regular unimodular triangulations.

2-Supported $\Delta_{(1, \mathrm{q})}$ (cont.)

Theorem (Braun-Davis-Solus, 2016)

Suppose \mathbf{q} is 2-supported. The simplex $\Delta_{(1, \mathbf{q})}$ is IDP reflexive if and only if \mathbf{q} is of the form $\left(r_{1}^{\chi_{1}}, r_{2}^{\chi_{2}}\right)$ where either
(1) $r_{1}=1$ with $r_{2}=1+x_{1}$ and x_{2} arbitrary, or
(2) $r_{1}>1$ with $r_{2}=1+r_{1} x_{1}$ and $x_{2}=r_{1}-1$.

2-Supported $\Delta_{(1, \mathrm{q})}$ (cont.)

Theorem (Braun-Davis-Solus, 2016)

Suppose \mathbf{q} is 2-supported. The simplex $\Delta_{(1, \mathbf{q})}$ is IDP reflexive if and only if \mathbf{q} is of the form $\left(r_{1}^{\chi_{1}}, r_{2}^{\chi_{2}}\right)$ where either
(1) $r_{1}=1$ with $r_{2}=1+x_{1}$ and x_{2} arbitrary, or
(2) $r_{1}>1$ with $r_{2}=1+r_{1} x_{1}$ and $x_{2}=r_{1}-1$.

- Goal: establish a regular unimodular triangulation of the point configuration formed by the lattice points of $\Delta_{(1, \mathbf{q})}$ in case (2).

Lattice Point Characterization

Define $\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{r_{1}+3}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\} \subset \mathbb{Z}^{d}$, where

$$
\begin{aligned}
\mathbf{a}_{r_{1}+1} & =\left((-1)^{x_{1}},\left(-x_{1}\right)^{r_{1}-1}\right), \\
\mathbf{a}_{r_{1}+2} & =\left(0^{x_{1}},(-1)^{r_{1}-1}\right), \\
\mathbf{a}_{r_{1}+3} & =\left(0^{x_{1}}, 0^{r_{1}-1}\right), \\
\mathbf{a}_{i} & =\left(r_{1}-i+1\right) \mathbf{a}_{r_{1}+1}+\mathbf{a}_{r_{1}+2} \text { for } 1 \leq i \leq r_{1} \\
\mathbf{b}_{j} & =\mathbf{e}_{d-j+1} \text { for } 1 \leq j \leq d
\end{aligned}
$$

Example:
For $\mathbf{q}=(2,3)$,
$\mathcal{A}=\{(-2,-3),(-1,-2),(-1,-1),(0,-1),(0,0),(0,1),(1,0)\}$
Theorem (Braun-H., 2020)
The lattice points of the 2-supported IDP simplex $\Delta_{(1, \mathbf{q})}$ are given by \mathcal{A}.

2-Supported IDP Reflexive $\Delta_{(1, \mathrm{q})}$ Admit a Regular

 Unimodular Triangulation
Theorem (Braun-H., 2020)

There exists a lexicographic squarefree initial ideal of the toric ideal associated with \mathcal{A}.

Corollary

Assume $\mathbf{q}=\left(r_{1}^{x_{1}},\left(1+r_{1} x_{1}\right)^{r_{1}-1}\right)$ with $r_{1}>1$. The convex polytope $\Delta_{(1, \mathbf{q})}=\operatorname{conv}\{\mathcal{A}\}$ admits a regular unimodular triangulation induced by the lexicographic term order $<_{\text {lex. }}$.

Project II: 3-Supported $\Delta_{(1, \mathrm{q})}$

- Purpose: Extend known results for 1- and 2-supported $\Delta_{(1, \mathbf{q})}$ to the 3-supported case
- Provide a complete characterization of 3-supported IDP reflexive $\Delta_{(1, \mathbf{q})}$
- Explore Ehrhart unimodality

Foundational IDP Result

Theorem (Braun-Davis-Solus, 2016)

The reflexive simplex $\Delta_{(1, \mathbf{q})}$ is IDP if and only if for every $j=1, \ldots, n$ and for all $b=1, \ldots, q_{j}-1$ satisfying

$$
b\left(\frac{1+\sum_{i \neq j} q_{i}}{q_{j}}\right)-\sum_{i \neq j}\left\lfloor\frac{b q_{i}}{q_{j}}\right\rfloor \geq 2
$$

there exists a positive integer $c<b$ satisfying the following equations:

$$
\begin{aligned}
& \left\lfloor\frac{b q_{i}}{q_{j}}\right\rfloor-\left\lfloor\frac{c q_{i}}{q_{j}}\right\rfloor=\left\lfloor\frac{(b-c) q_{i}}{q_{j}}\right\rfloor, \text { and } \\
& c\left(\frac{1+\sum_{i \neq j} q_{i}}{q_{j}}\right)-\sum_{i \neq j}\left\lfloor\frac{c q_{i}}{q_{j}}\right\rfloor=1
\end{aligned}
$$

where the first is considered for all $1 \leq i \leq n$ with $i \neq j$.

IDP Result (cont.)

Corollary

If $\Delta_{(1, \mathbf{q})}$ is reflexive and IDP, then for all $j=1,2, \ldots, n$,

$$
1+\sum_{i=1}^{n}\left(q_{i} \bmod q_{j}\right)=q_{j}
$$

or equivalently

$$
1+\sum_{i=1}^{n} x_{i}\left(r_{i} \bmod r_{j}\right)=r_{j}
$$

IDP Result (cont.)

Corollary

If $\Delta_{(1, \mathbf{q})}$ is reflexive and IDP, then for all $j=1,2, \ldots, n$,

$$
1+\sum_{i=1}^{n}\left(q_{i} \bmod q_{j}\right)=q_{j}
$$

or equivalently

$$
1+\sum_{i=1}^{n} x_{i}\left(r_{i} \bmod r_{j}\right)=r_{j}
$$

Any \mathbf{q} satisfying these equations for all j is said to satisfy the necessary condition for IDP.

Stratify by Multiplicity Instead of Support

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

Consider a 3-supported vector $\mathbf{q}=(\mathbf{r}, \mathbf{x})$ such that $\Delta_{(1, \mathbf{q})}$ satisfies the necessary condition for IDP. If $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then \mathbf{r} is of one of the following forms:
(i) $\mathbf{r}=\left(1,1+x_{1},\left(1+x_{1}\right)\left(1+x_{2}\right)\right)$.
(ii) $\mathbf{r}=\left(1+x_{2}, 1+x_{1}\left(1+x_{2}\right),\left(1+x_{1}\left(1+x_{2}\right)\right)\left(1+x_{2}\right)\right)$.
(iii) $\mathbf{r}=\left(\left(1+x_{2}\right)\left(1+x_{3}\right), 1+x_{1}\left(1+x_{2}\right)\left(1+x_{3}\right),\left(1+x_{1}\left(1+x_{2}\right)\left(1+x_{3}\right)\right)\left(1+x_{2}\right)\right)$.
(iv) $\mathbf{r}=\left(1,\left(1+x_{1}\right)\left(1+x_{3}\right),\left(1+x_{1}\right)\left(1+x_{2}\left(1+x_{3}\right)\right)\right)$.
(v) $\mathbf{r}=\left(1+\left(1+x_{3}\right) x_{2},\left(1+x_{3}\right)\left(1+x_{1}\left(1+\left(1+x_{3}\right) x_{2}\right)\right),\left(1+\left(1+\left(1+x_{3}\right) x_{2}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
(vi) $\mathbf{r}=\left(\left(1+x_{3}\right)\left(1+\left(1+x_{3}\right) x_{2}\right),\left(1+x_{3}\right)\left(1+x_{1}\left(1+x_{3}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right),\left(1+\left(1+x_{3}\right)(1+\right.\right.$ $\left.\left.\left.\left(1+x_{3}\right) x_{2}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
(vii) $\mathbf{r}=\left(1+x_{3},\left(1+x_{3}\right)\left(1+x_{1}\left(1+x_{3}\right)\right),\left(1+\left(1+x_{3}\right) x_{1}\right)\left(1+\left(1+x_{3}\right) x_{2}\right)\right)$.
(viii) There exists some $k, s \geq 1$, where

$$
\begin{aligned}
& \mathbf{r}=\left(1+k x_{2},\left(s k x_{2}+s+k\right)\left(1+x_{1}\left(1+k x_{2}\right)\right),\left(1+x_{1}\left(1+k x_{2}\right)\right)\left(1+x_{2}\left(s k x_{2}+s+k\right)\right)\right), \\
& \mathbf{x}=\left(x_{1}, x_{2}, s k x_{2}+s-k+1\right)
\end{aligned}
$$

Further, the first seven \mathbf{r}-vectors produce IDP $\Delta_{(1, \mathbf{q})}$'s, while (viii) does not.

Unimodality in the IDP Reflexive Case

Theorem
If \mathbf{q} is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1, \mathbf{q})}$, then $\Delta_{(1, \mathbf{q})}$ is h^{*}-unimodal.

Unimodality in the IDP Reflexive Case

Theorem

If \mathbf{q} is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1, \mathbf{q})}$, then $\Delta_{(1, \mathbf{q})}$ is h^{*}-unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ a positive integer vector, if $\mathbf{q}=(\mathbf{r}, \mathbf{x})$ where \mathbf{r} is one of the following forms, then $\Delta_{(1, \mathbf{q})}$ is h^{*}-unimodal.
(i) $\mathbf{r}=\left(1,1+x_{1},\left(1+x_{1}\right)\left(1+x_{2}\right)\right)$.
(ii) $\mathbf{r}=\left(1+x_{2}, 1+x_{1}\left(1+x_{2}\right),\left(1+x_{1}\left(1+x_{2}\right)\right)\left(1+x_{2}\right)\right)$.
(iv) $\mathbf{r}=\left(1,\left(1+x_{1}\right)\left(1+x_{3}\right),\left(1+x_{1}\right)\left(1+x_{2}\left(1+x_{3}\right)\right)\right)$.

Unimodality in the IDP Reflexive Case

Theorem

If \mathbf{q} is a 1- or 2-supported vector yielding an IDP reflexive $\Delta_{(1, \mathbf{q})}$, then $\Delta_{(1, \mathbf{q})}$ is h^{*}-unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ a positive integer vector, if $\mathbf{q}=(\mathbf{r}, \mathbf{x})$ where \mathbf{r} is one of the following forms, then $\Delta_{(1, \mathbf{q})}$ is h^{*}-unimodal.
(i) $\mathbf{r}=\left(1,1+x_{1},\left(1+x_{1}\right)\left(1+x_{2}\right)\right)$.
(ii) $\mathbf{r}=\left(1+x_{2}, 1+x_{1}\left(1+x_{2}\right),\left(1+x_{1}\left(1+x_{2}\right)\right)\left(1+x_{2}\right)\right)$.
(iv) $\mathbf{r}=\left(1,\left(1+x_{1}\right)\left(1+x_{3}\right),\left(1+x_{1}\right)\left(1+x_{2}\left(1+x_{3}\right)\right)\right)$.

Experimental evidence suggests the remaining four cases are also h^{*}-unimodal.

Thank You!

Questions?

2-Supported $\Delta_{(1, \mathbf{q})}$ Preprint: https://arxiv.org/abs/2010.13720
3-Supported $\Delta_{(1, \mathbf{q})}$ Preprint: https://arxiv.org/abs/2103.17156

