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Brief Polytope Introduction

(Convex) polytopes are geometric objects that can be defined as the
convex hull of finitely many points in Rn.

Definition

A subset P ⊆ Rn is a d-dimensional lattice polytope if it is the convex hull
of finitely many points in Zn that span a d-dimensional affine subspace of
Rn.

P
P = conv {(1, 0), (0, 1), (−2,−3)}
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Weighted Projective Space Simplices

Definition

Consider an integer partition q = (q1, . . . , qd) ∈ Zd
≥1 with the convention

q1 ≤ · · · ≤ qd . The lattice simplex associated with q is

∆(1,q) := conv

{
e1, . . . , ed ,−

d∑
i=1

qiei

}
,

where ei denotes the ith standard basis vector in Rd .

Q = all lattice simplices of the form ∆(1,q)

Simplices in Q correspond to a subset of simplices defining weighted
projective spaces:

- the vector (1,q) gives weights of projective coordinates of the
associated weighted projective space

Normalized Volume of ∆(1,q): 1 +
∑

i qi
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Useful Notation & Terminology

A natural parametrization on Q based on distinct entries:

Suppose q = (q1, . . . , qd) has t distinct entries given by
r := (r1, . . . , rt) with multiplicities x := (x1, . . . , xt). Then,
q = (q1, . . . , qd) = (r x11 , . . . , r xtt ).

We write q = (r, x) and say both q and ∆(1,q) are supported by the
vector r with multiplicity x.

In this case, we say q and ∆(1,q) are t-supported.
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Two Important Properties

Definition

A lattice polytope P is reflexive if, possibly after translation by an integer
vector, the origin is contained in P◦ and its geometric dual (or polar body)

P∗ := {x ∈ Rn | x · y ≤ 1 for all y ∈ P}

is also a lattice polytope. (Here, P◦ denotes the topological interior of P.)

Definition

A lattice polytope P ⊆ Rn has the integer decomposition property (or is
IDP) if, for every integer t ∈ Z>0 and for all p ∈ tP ∩ Zn, there exists
p1, . . . ,pt ∈ P ∩ Zn such that p = p1 + · · ·+ pt .

We will be interested in ∆(1,q) that are simultaneously IDP and reflexive.
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Motivation: Why IDP and Reflexive?

Conjectures in commutative algebra have motivated a significant amount
of study on the Ehrhart theory of lattice polytopes.

Ehrhart theory: lattice point enumeration of dilates of polytopes

What geometric properties of P are necessary/sufficient for h∗(P; z)
to be symmetric, unimodal, etc?

Conjecture (Hibi-Ohsugi)

If P is a lattice polytope that is reflexive and IDP, then P has a unimodal
Ehrhart h∗-polynomial.

Lattice simplices have been shown to form a rich testing ground of
examples with which to vet this conjecture.

Leverage algebraic/geometric properties of special classes
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Project I: Triangulations of 2-Supported ∆(1,q)

Definition

Let A ⊆ Rd be a point configuration. A triangulation T of A is unimodular
if every simplex has normalized volume one. We say T is regular if it can
be obtained by projecting the lower envelope of a lifting of A from Rd+1.

∆(1,2,3)

(1, 0)

(0, 1)

(−2,−3)
1

2

3 4

5

6

7
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Motivation: 2-Supported ∆(1,q) Triangulations

Theorem

If a lattice polytope P admits a unimodular triangulation, then P is IDP.

Theorem (Braun-Davis-Solus, 2016)

If ∆(1,q) is 2-supported and IDP reflexive, then ∆(1,q) has a unimodal
Ehrhart h∗-vector.

Theorem (Bruns-Römer, 2007)

If P is reflexive and admits a regular unimodular triangulation, then P has
a unimodal Ehrhart h∗-vector.

Thus, it is of interest to determine if IDP reflexive lattice polytopes admit
regular unimodular triangulations.
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2-Supported ∆(1,q) (cont.)

Theorem (Braun-Davis-Solus, 2016)

Suppose q is 2-supported. The simplex ∆(1,q) is IDP reflexive if and only if
q is of the form (r x11 , r x22 ) where either

1 r1 = 1 with r2 = 1 + x1 and x2 arbitrary, or

2 r1 > 1 with r2 = 1 + r1x1 and x2 = r1 − 1.

Goal: establish a regular unimodular triangulation of the point
configuration formed by the lattice points of ∆(1,q) in case (2).
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Lattice Point Characterization

Define A = {a1, . . . , ar1+3,b1, . . . ,bd} ⊂ Zd , where

ar1+1 = ((−1)x1 , (−x1)r1−1),

ar1+2 = (0x1 , (−1)r1−1),

ar1+3 = (0x1 , 0r1−1),

ai = (r1 − i + 1)ar1+1 + ar1+2 for 1 ≤ i ≤ r1

bj = ed−j+1 for 1 ≤ j ≤ d

Example:
For q = (2, 3),
A = {(−2,−3), (−1,−2), (−1,−1), (0,−1), (0, 0), (0, 1), (1, 0)}

Theorem (Braun-H., 2020)

The lattice points of the 2-supported IDP simplex ∆(1,q) are given by A.
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2-Supported IDP Reflexive ∆(1,q) Admit a Regular
Unimodular Triangulation

Theorem (Braun-H., 2020)

There exists a lexicographic squarefree initial ideal of the toric ideal
associated with A.

Corollary

Assume q = (r x11 , (1 + r1x1)r1−1) with r1 > 1. The convex polytope
∆(1,q) = conv {A} admits a regular unimodular triangulation induced by
the lexicographic term order <lex .
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Project II: 3-Supported ∆(1,q)

Purpose: Extend known results for 1- and 2-supported ∆(1,q) to the
3-supported case

Provide a complete characterization of 3-supported IDP reflexive ∆(1,q)

Explore Ehrhart unimodality
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Foundational IDP Result

Theorem (Braun-Davis-Solus, 2016)

The reflexive simplex ∆(1,q) is IDP if and only if for every j = 1, . . . , n and
for all b = 1, . . . , qj − 1 satisfying

b

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
bqi
qj

⌋
≥ 2,

there exists a positive integer c < b satisfying the following equations:⌊
bqi
qj

⌋
−
⌊
cqi
qj

⌋
=

⌊
(b − c)qi

qj

⌋
, and

c

(
1 +

∑
i 6=j qi

qj

)
−
∑
i 6=j

⌊
cqi
qj

⌋
= 1,

where the first is considered for all 1 ≤ i ≤ n with i 6= j .
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IDP Result (cont.)

Corollary

If ∆(1,q) is reflexive and IDP, then for all j = 1, 2, . . . , n,

1 +
n∑

i=1

(qi mod qj) = qj

or equivalently

1 +
n∑

i=1

xi (ri mod rj) = rj .

Any q satisfying these equations for all j is said to satisfy the necessary
condition for IDP.

D. Hanely Weighted Projective Space Simplices 10-9-21 15 / 18



IDP Result (cont.)

Corollary

If ∆(1,q) is reflexive and IDP, then for all j = 1, 2, . . . , n,

1 +
n∑

i=1

(qi mod qj) = qj

or equivalently

1 +
n∑

i=1

xi (ri mod rj) = rj .

Any q satisfying these equations for all j is said to satisfy the necessary
condition for IDP.

D. Hanely Weighted Projective Space Simplices 10-9-21 15 / 18



Stratify by Multiplicity Instead of Support

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

Consider a 3-supported vector q = (r, x) such that ∆(1,q) satisfies the necessary
condition for IDP. If x = (x1, x2, x3), then r is of one of the following forms:

(i) r = (1, 1 + x1, (1 + x1)(1 + x2)).

(ii) r = (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)).

(iii) r = ((1 + x2)(1 + x3), 1 + x1(1 + x2)(1 + x3), (1 + x1(1 + x2)(1 + x3))(1 + x2)).

(iv) r = (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

(v) r = (1+(1+x3)x2, (1+x3)(1+x1(1+(1+x3)x2)), (1+(1+(1+x3)x2)x1)(1+(1+x3)x2)).

(vi) r = ((1 + x3)(1 + (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), (1 + (1 + x3)(1 +
(1 + x3)x2)x1)(1 + (1 + x3)x2)).

(vii) r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2)).

(viii) There exists some k, s ≥ 1, where

r = (1 + kx2, (skx2 + s + k)(1 + x1(1 + kx2)), (1 + x1(1 + kx2))(1 + x2(skx2 + s + k))),

x = (x1, x2, skx2 + s − k + 1) .

Further, the first seven r-vectors produce IDP ∆(1,q)’s, while (viii) does not.
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Unimodality in the IDP Reflexive Case

Theorem

If q is a 1- or 2-supported vector yielding an IDP reflexive ∆(1,q), then
∆(1,q) is h∗-unimodal.

Theorem (Braun-Davis-H.-Lane-Solus, 2021)

For x = (x1, x2, x3) a positive integer vector, if q = (r, x) where r is one of
the following forms, then ∆(1,q) is h∗-unimodal.

(i) r = (1, 1 + x1, (1 + x1)(1 + x2)).

(ii) r = (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)).

(iv) r = (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))).

Experimental evidence suggests the remaining four cases are also
h∗-unimodal.
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Thank You!

Questions?

2-Supported ∆(1,q) Preprint: https://arxiv.org/abs/2010.13720

3-Supported ∆(1,q) Preprint: https://arxiv.org/abs/2103.17156
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