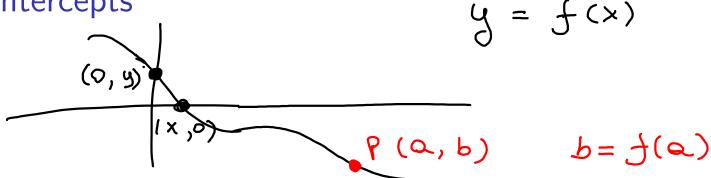
Lesson 8

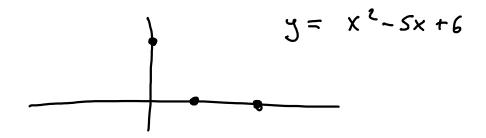

Read Chapter 5 and Chapter 6

Functions, domain range

Multipart functions

semicircles

x and y intercepts


Given y = f(x)To find y intercept calculate f(0), if o is in demain of f(x). To find f(x) intercept f(x) and solve for f(x)

There is at most 1 y intercept
There can be any number of x intercepts
(including NONE)

Find x and y intercepts for $f(x) = x^2 - 5x + 6$ $y = x^2 - 5x + 6$

i) For y intercept:
$$x=0$$
 compute $f(0)=0$
i) For x intercept: $y=0$ solve $0=x^2-5x+6$ $x=2,3$

$$(2,0)$$
 $(3,0)$

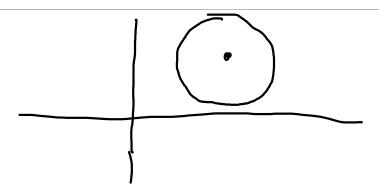
Domain=set of all allowed inputs

If we have a formula y=f(x), NATURAL DOMAIN is all x that I can plug into the formula but there maybe other restrictions. Recall Ann and Bob problem: y(t)=10+6(t-15), $t\geq 15$

Find the (natural) domain of $f(x) = \frac{\sqrt{x+1}}{x-5}$

In EXPR requires EXPR > 0

 $\sqrt{\text{EXPR}}$ requires EXPR ≥ 0


 $\frac{\mathsf{SOMETHING}}{\mathsf{EXPR}} \text{ requires } \mathsf{EXPR} \neq 0$

Algebraic manipulations

Given
$$f(x) = \frac{\sqrt{x+1}}{x-5}$$
 calculate $f(1+h)$

Given $f(x) = \sqrt{x-8}$ simplify $\frac{f(x+h)-f(x)}{h}$ enough so that plugging in h=0 is allowed

Given	(x-1)2+(y-2)2 = 9	solve for y

Given
$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Top semicircle is
$$y = y_0 + \sqrt{r^2 - (x - x_0)^2}$$

Bottom, semicircle is
$$y = y_0 - \sqrt{r^2 - (x - x_0)^2}$$