Lesson 7

Finish Chapter 4, start Chapter 5

Parametric equations of motion

Functions, domain range

Uniform Pinear motion

Parametric equations. Uniform rectilinear motion.

Suppose an object is at $\left(x_{1}, y_{1}\right)$ at time t_{1} and it moves along a straight line at constant speed v.
The parametric equations of motion of the object are :

$$
x(t)=x_{1}+v_{x}\left(t-t_{1}\right), \quad y(t)=y_{1}+v_{y}\left(t-t_{1}\right)
$$

for t and t_{1} greater than the time when the object started moving, where v_{x} is the horizontal component of the velocity and v_{y} is the vertical component of the velocity.

You can calculate v_{x} and v_{y} in different ways, depending on what the problem gives you :

- If you also know the object is at $Q\left(x_{2}, y_{2}\right)$ at time t_{2} then

$$
\begin{aligned}
& v_{x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}\left(\frac{\Delta x}{\Delta t}\right) \\
& v_{y}=\frac{y_{2}-y_{1}}{t_{2}-t_{1}}\left(\frac{\Delta y}{\Delta t}\right)
\end{aligned}
$$

- If you know v and θ (see figure) then

$$
\begin{aligned}
& v_{x}=v \cos (\theta) \\
& v_{y}=v \sin (\theta) .
\end{aligned}
$$

Note: in many problems time t_{1} is just the initial time so $t_{1}=0$ in which case you have

$$
x=x_{1}+v_{x} t, \quad y=y_{1}+v_{y} t
$$

Alice is running at a speed of 5 mph starting at $P(1,3)$ along the line $y=2 x+1$ in the NE direction. What are Alice' s parametric equations of motion ?

When is Alice 's 4 mi away from the point $R(2,2)$?

At time t Aliae is at $(1+\sqrt{5} t, 3+2 \sqrt{5} t)$

What is a function?

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

Not 2 function

$$
y=x^{2}
$$

Funcion

Interval notation

$(2,3)$ means all x with $2<x<3$
[2,3] means all x with $2 \leq x \leq 3$
$[2,3)$ means all x with $2 \leq x<3$
$(-\infty,+\infty)$ means all x in R
$(2,+\infty) \quad x>2$
x and y intercepts

Given $y=f(x)$
To find y intercept calculate $f(0)$, if O is in domain To find x intercept (s) set $f(x)=0$ and solve for x

Find x and y intercepts for $f(x)=x^{2}-5 x+6$

$$
y=x^{2}-5 x+6
$$

1) For y intercept : $x=0$ compute $f(0)=6 \quad(0,6)$
2) For x intercept : $y=0$ solve $0=x^{2}-5 x+6 \ldots \quad x=2,3$ $(2,0) \quad(3,0)$

