Lesson 5

Read Chapter 3

circles

Find the point Q on the line $L: y=2 x+1$ that is closest to the point $P(3,0)$.

Equation of a circle

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

The circle has center $\left(x_{0}, y_{0}\right)$ and radius r.
A point $P\left(x_{1}, y_{1}\right)$

- is on the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}=r^{2}$
- is inside the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}<r^{2}$
- is out side the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}>r^{2}$

Find the center and radius of the circle

$$
3 x^{2}+18 x+3 y^{2}-6 y+6=0
$$

$$
x^{2}+a x+y^{2}+b y+c=0
$$

is the equation of a circle with center at $x_{0}=-\frac{a}{2}, y_{0}=-\frac{b}{2}$ and radius $r=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}-c}$

Intersection of a line and a circle

Find the intersection of the unit circle and the line $y=x+\frac{1}{2}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
y=x+\frac{1}{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
y=x+\frac{1}{2} \\
x^{2}+\left(x+\frac{1}{2}\right)^{2}=1
\end{array}\right. \\
& x^{2}+x^{2}+x+\frac{1}{4}-1=0
\end{aligned} \begin{aligned}
& 2 x^{2}+x-\frac{3}{4}=0 ; \frac{x=-1 \pm \sqrt{1+6}}{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { If } x=\frac{-1+\sqrt{7}}{4} \quad y=\frac{-1+\sqrt{7}}{4}+\frac{1}{2} & P=\left(\frac{-1+\sqrt{7}}{4}, \frac{1}{4}+\frac{\sqrt{7}}{4}\right) \\
\text { if } x=\frac{-1-\sqrt{7}}{4}, y=\frac{-1-\sqrt{7}}{4}+\frac{1}{2} & Q\left(\frac{-1-\sqrt{7}}{4}, \frac{1}{4}-\frac{\sqrt{7}}{4_{1}}\right)
\end{array}
$$

Tangent to a circle

Fact: if a line L is tangent to a circle at P, then the line is perpendicular to the radius $C P$.
Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ at the point $P(1,-1)$

Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ through the point $Q(0,8)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(x-3)^{2}+(y+2)^{2}=5 \quad \text { Q Expend squeres } \\
\frac{3-x}{2+y}=\frac{8-y}{-x} \quad \text { Q cross moltiply }
\end{array}\right. \\
& \begin{cases}x^{2}-6 x+9+y^{2}+4 y+6=5 & \text { simplify } \\
-3 x+x^{2}=16+8 y-2 y-y^{2} & \text { simplify }\end{cases} \\
& \begin{cases}x^{2}+y^{2}=6 x-4 y-8 & \text { keep } \\
x^{2}+y^{2}=16+6 y+3 x\end{cases} \\
& \begin{cases}x^{2}+y^{2}=6 x-4 y-8 & Q \\
6 x-4 y-8=16+6 y+3 x & \text { solue for } y\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=6 x-4 y-8 \\
3 x-24=10 y
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{2}+\left(\frac{3 x-24}{10}\right)^{2}=6 x-4\left(\frac{3 x-24}{10}\right)-8 \\
y=\frac{3 x-24}{10}
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{2}+\frac{9 x^{2}-2 \cdot 3 \cdot 24 x+24_{1}^{2}}{100}=6 x-\frac{12 x-96}{10}-8 \\
1-1
\end{array}\right. \\
& \frac{109}{a} x^{2} \frac{-624}{b} x+\frac{416}{c}=0>\begin{array}{l}
x \approx 4.95 \\
x=0.77
\end{array}
\end{aligned}
$$

$$
y=\frac{3 x-24}{10}
$$

For $x=4.9545 \quad y \approx-0.91 \quad R_{1}$
For $x=0.7703 \quad y \approx-2.17 \quad R_{2}$
tengent 1 line through $Q(0.8) \quad R_{1}(4.95,-0.91)$

$$
y=8+\frac{8-(-0.91)}{0-4.95} \cdot y=8-1.8 x
$$

tengent 2 : Pine through $Q(0.8) \quad R_{2}(0.77,-2.17)$

$$
y=8+\frac{8+2.17}{-0.77} \times y=8-13.21 x
$$

$$
\begin{aligned}
& P\left(x_{1} y_{1}\right)
\end{aligned} \quad Q\left(x_{2} y_{2}\right), ~ \begin{aligned}
& y_{2}-y_{1}\left(x-x_{1}\right) \\
& y=x_{2}-x_{1}
\end{aligned}
$$

Find the equation of the line tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ and parallel to the line $4 x-2 y+10=0$

Video with solution in Canvas

