Lesson 4

Read Chapter 3
lines and circles

Tricky version

$$
t=0 .
$$

Bob is standing 10 feet North of Ann, when Ann starts moving East at 6 feet/sec. 15 seconds later Bob, starts moving North at 5 feet $/ \mathrm{sec}$. When is the distance between Ann and Bob 50 feet ?

$A n n$

$$
\begin{aligned}
& x_{A}(t)=6 t \\
& y_{A}(t)=0
\end{aligned}
$$

valid for $t \geqslant 0$

$$
(6 t, 0)
$$

valid for $t \geq 15$
($0,10+5(6-15)$)

We went $d((6 t, 0)(0,10+5(t-15)))=50$

$$
50=\sqrt{(6 t-0)^{2}+\left(0-\left(10+5(t-15)^{2}\right.\right.}
$$

do the algebra.... $t=5,5.66$
Can I accept these solutions? No DISCARD BOTH

There is no time $t \geq 0$ when the distance between $A_{n n}$ and Bob is so ft?

$A n n$

$$
\begin{array}{ll}
x_{A}(t)=6 t & x_{B}(t)= \\
y_{A}(t)=0 & y_{B}(t)=
\end{array}
$$

for $t \geqslant 0$

Bob
for

$$
t
$$

Ann et ($6 t, 0$) Bob at $(0,10)$

$$
\begin{aligned}
& 50=\sqrt{(6 t)^{2}+10^{2}} \\
& 2500=36 t^{2}+100 \\
& 2400=36 t^{2} \\
& \pm \sqrt{\frac{2400}{36}}=t \quad \text { drscerd negetive solution } \\
& \sqrt{\frac{2400}{36}} \approx 8.16 \mathrm{sec}
\end{aligned}
$$

Chepter 3:

Equation:

$$
\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)
$$

Greph of a function
Function

$$
y=\text { expression in } x
$$

Example of function

$$
y=x^{2}
$$

Is every line the graph of a function?

Lines equations

$$
\left.\begin{array}{l}
\mathrm{ax}+\mathrm{by}+\mathrm{c}=0 \\
y=m x+b \\
y=y_{1}+m\left(x-x_{1}\right)
\end{array}\right\} \begin{aligned}
& \text { for a line } \\
& \text { thet is non } \\
& \text { verticel }
\end{aligned}
$$

slope of a line

$$
y=m x+b
$$

$$
y=y_{1}+m\left(b-x_{1}\right)
$$

Useful facts about lines

1. Two lines $L_{1}: y=m_{1} x+b_{1}$ and
$L_{2}: y=m_{2} x+b_{2}$ are parallel iff $m_{1}=m_{2}$.
2. Two lines $L_{1}: y=m_{1} x+b_{1}$ and
$L_{2}: y=m_{2} x+b_{2}$ are perpendicular iff $m_{1}=-\frac{1}{m_{2}}$
3. The slope of the line through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$
4. The equation of a line through $P\left(x_{0}, y_{0}\right)$ with slope m is

$$
y=y_{0}+m\left(x-x_{0}\right)
$$

5. The equation of the line through point $\mathrm{P}=\left(x_{0}, y_{0}\right)$ and $\mathrm{Q}=\left(x_{1}, y_{1}\right)$ is $y=y_{0}+\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)$ if $x_{1}-x_{2} \neq 0$ and $y=x_{1}$ if $x_{1}=x_{0}$.

Find the point Q on the line $L: y=2 x+1$ that is closest to the point $P(3,0)$.

Equation of a circle

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

The circle has center $\left(x_{0}, y_{0}\right)$ and radius r.
A point $P\left(x_{1}, y_{1}\right)$

- is on the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}=r^{2}$
- is inside the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}<r^{2}$
- is out side the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}>r^{2}$

Find the center and radius of the circle

$$
3 x^{2}+18 x+3 y^{2}-6 y+6=0
$$

$$
x^{2}+a x+y^{2}+b y+c=0
$$

is the equation of a circle with center at $x_{0}=-\frac{a}{2}, y_{0}=-\frac{b}{2}$ and radius $r=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}-c}$

