Lesson 3

Still on Chapter 2

Motion problems

Recall

If an object is moving with constant velocity v and at time t_{1} it is at (a, b) then the position of the object at time t is:

- $x(t)=a+v\left(t-t_{1}\right), \quad y(t)=b$ object is moving along horizontal line $y=b$.
- $x(t)=a, \quad y(t)=b+v\left(t-t_{1}\right)$ if object is moving along vertical line $x=a$.

Example

Ann and Bob start moving at the same time from the same location. Ann moves East at 6 feet $/ \mathrm{sec}$. Bob moves North at 5 feet/sec.
What is the distance between Ann and Bob 10 sec later ? When is the distance between Ann and Bob 50 feet?

When is distence between Ann and Bob equal to 50 feet?
$\operatorname{Ann}(6 t, 0) \quad \operatorname{Bob}(0,5 t)$

Algebra question

Is $\sqrt{x^{2}}=x$?

What if Ann and Bob start at different times from different locations?

Bob is standing 10 feet North of Ann, when Ann starts moving East at 6 feet $/ \mathrm{sec} .3$ seconds later Bob, starts moving North at 5 feet $/ \mathrm{sec}$. When is the distance between Ann and Bob 50 feet ?

$$
50=\sqrt{36 t^{2}+(10+5(t-3))^{2}}
$$

(1) square both sides

$$
2500=36 t^{2}+(10+5(t-3))^{2}
$$

(2) simplify inside

$$
2500=36 t^{2}+(5 t-5)^{2}
$$

(3) Expend square: recall $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
2500=36 t^{2}+25 t^{2}-50 t+25
$$

(4) move 2500 to the right and simplify

$$
61 t^{2}-50 t-2475=0
$$

(5) Use quadratic formula recall the solutions of $a x^{2}+b x+c=0$

$$
\begin{aligned}
& \text { are } \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { if } b^{2}-4 a c \geqslant 0 \\
& t=\frac{50 \pm \sqrt{50^{2}+4.61 .2475}}{2.61} \approx-5.97,6.79
\end{aligned}
$$

For our problem, the negative solution would be a time before $A n n$ and Bob start moving so it does not make sense so $t=6.79 \mathrm{sec}$

Tricky version
Bob is standing 10 feet North of Ann, when Ann starts moving East at 6 feet/sec. 15 seconds later Bob, starts moving North at 5 feet/sec. When is the distance between Ann and Bob 50 feet ?

$A n n$

$$
\begin{aligned}
& x(t)=6 t \\
& y(t)=0
\end{aligned}
$$

valid for $t \geqslant 0$

$$
\begin{gathered}
\text { Bob } \\
x(t)=0 \\
y(t)=10+5(t-15)
\end{gathered}
$$

Gelid for $t \geqslant 15$

We went $d((6 t, 0)(0,10+5(t-15)))=50$

$$
\sqrt{(6 t-0)^{2}+(0-(10+5(t-\sigma)))^{2}}=50^{2}
$$

do the algebra.... $t=5,5.66$
Can I accept these solutions?

There is no tirme $t \geq 0$ when the distence between $A_{n n}$ and Bob is so ft?

$$
t=15 \bigcap_{\longrightarrow}
$$

$A n n$
Bob

$$
\begin{aligned}
& x(t)=6 t \\
& y(t)=0
\end{aligned}
$$

$$
\begin{aligned}
& 50=\sqrt{(6 t)^{2}+10^{2}} \\
& 2500=36 t^{2}+100 \\
& 2400=36 t^{2} \\
& \pm \sqrt{\frac{2400}{36}}=t \quad \text { discard negative solution } \\
& \sqrt{\frac{2400}{36}} \approx 8.16 \mathrm{sec}
\end{aligned}
$$

