

Sinusoidal functions

$$f(x) = A\sin(\frac{2\pi}{B}(x-C)) + D \quad A, B > 0$$

A: amplitude. Half total height = $\frac{y_{max} - y_{min}}{2}$.

B: period. Horizontal distance between two consecutive peaks or valleys, or double the horizontal distance between one peak and the next valley or one valley and the next peak.

C: phase shift. x-coordinate of max - $\frac{B}{4}$ or x-coordinate of a point half way (vertically) between a valley and a peak.

D:mean. Half way vertical point = $\frac{y_{max} + y_{min}}{2}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

solve
$$3\sin(\frac{2\pi}{5}(t-\frac{7}{4})) + 2 = 4$$

Other way to jund symmetry solution
Solve
$$3\sin(\frac{2\pi}{5}(t-\frac{\pi}{4}))+2=4$$

Sin $(\frac{2\pi}{5}(t-\frac{\pi}{4}))=\frac{2}{3}$, $\frac{5}{2\pi}$, $\sin^{-1}(\frac{\pi}{3})+\frac{\pi}{4}=2$
Sin $(\theta)=\frac{2}{3}$
Symmetry is $\theta=\pi-\sin^{-1}(\frac{\pi}{3})$, solve for t
 $\frac{2\pi}{5}(t-\frac{\pi}{4})=\pi-\sin^{-1}(\frac{\pi}{3})$, solve for t
 $t-\frac{\pi}{4}=\frac{5}{2\pi}(\pi-\sin^{-1}(\frac{\pi}{3}))$
 $t=\frac{\pi}{4}+\frac{5}{2}-\frac{5}{2\pi}\sin^{-1}(\frac{\pi}{3})$
 $\frac{\pi}{4}+\frac{\pi}{4}+\frac{5}{2}-(\frac{5}{2\pi}-\frac{\pi}{4}\sin^{-1}\frac{2}{3})$

How to solve $A\sin(\frac{2\pi}{B}(x-C)) + D = V$

- Do some algebra first: $sin(\frac{2\pi}{B}(x C)) = \frac{V D}{A}$
- Use $\arctan(\frac{2\pi}{B}(x-C)) = \arctan(\frac{V-D}{A})$
- Do some more algebra to solve for x: $x = C + \frac{B}{2\pi} \arcsin(\frac{V-D}{A}).$
- ► $x_1 = C + \frac{B}{2\pi} \operatorname{arcsin}(\frac{V-D}{A})$ is the principal solution. $C - \frac{B}{4} \le x_1 \le C + \frac{B}{4}$
- ► All values $x_1 + kB$, $k = 0, \pm 1, \pm 2, \pm 3, \cdots$ are also solutions.
- The symmetry solution is x₂ = x_{max} + (x_{max}-principal), where x_{max} is the x coordinate of the first max to the right of C.
- All values $x_2 + kB$ $k = 0, \pm 1, \pm 2, \pm 3, \cdots$ are also solutions.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _

WebAssign how (ch 19 #3) C (xo yo) Angular speed W E Ь 7 à The height of the notating object above the x axis is a sinusoidal Junction See Video on Week 10 module of conves

Note: Sinx x サリフ $Cosx = \lambda'n(x+\pi)$ $\cos x = \sin \left(-x + \frac{\pi}{z}\right) = \sin \left(\frac{\pi}{z} - x\right)$ •