## Lesson 21

## Read Chapter 17

Trigonometric functions. Triangle definition.

Problems involving two triangles

Two objects move around a circle. They start at the same time. Object 1 moves in the counterclockwise direction, with angular speed of $\frac{\pi}{50} \mathrm{rad} / \mathrm{sec}$; from where it starts it takes it 20 seconds to reach the easternmost part of the track. Object 2 moves in the clockwise direction, starting from the northernmost part of the track 's with a speed of 4 feet $/ \mathrm{sec}$. The two objects pass each other after 25 sec . What is object 1's starting position ? (Give your answer as an angle). What is the radius of the track ?



1) How do we distinguish the two angles?
2) What are the coordinates of $A$ and $B$ ?

## Trig for angles $0<\theta<\frac{\pi}{2}$


$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

$$
\begin{array}{ll}
\theta=\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{6} \\
\begin{array}{ll}
\frac{1}{a} \\
\sin \frac{\pi}{4}= & a^{2}+a^{2}=1 ; \\
\cos \frac{\pi}{4}= & a^{2}=1 ; a^{2}=\frac{1}{2} ; a=\frac{1}{\sqrt{2}} \\
\sin \frac{\pi}{4}= \\
\sin \frac{\pi}{3}= & \cos \frac{\pi}{3}= \\
\sin \frac{\pi}{6}= & \cos \frac{\pi}{6}=
\end{array} \quad \tan \frac{\pi}{3}=
\end{array}
$$

If $\alpha=1.3 \mathrm{rad}$, find $x$ and $y$


If $\alpha=0.5 \mathrm{rad}$, find $x$ and $z$

3. Godzilla is attacking, but at the moment he is standing on top of a building downtown. You want to determine Godzilla's height, so you measure three angles. First, from a certain distance away from the building, you measure the angle the top of the building makes with the horizontal: $\theta_{1}=72^{\circ}$. You then move 50 meters farther from the building and measure the angle Godzilla's head makes with the horizontal: $\theta_{2}=74^{\circ}$. You then move 75 meters farther from the building and measure the angle the top of the building makes with the horizontal: $\theta_{3}=60^{\circ}$.
The figure may not be to scale.


How tall is Godzilla?
4. You are on a road connecting the bases of Mountain A and Mountain B.

You look at Mountain A and measure the angle of elevation to the top of Mountain A to be $15^{\circ}$.

You then travel 2 km toward Mountain B.
You measure Mountain B's angle of elevation from your new location to be $17^{\circ}$.


Mountain A and Mountain B are 20 km apart as shown in the figure, and Mountain B is exactly twice as tall as Mountain A.

What is the height of Mountain A?

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ \frac { x } { y } = \operatorname { t a n } ( 1 5 ^ { \circ } ) } \\
{ \frac { 2 x } { 1 8 - y } = \operatorname { t a n } ( 1 7 ^ { \circ } ) }
\end{array} \left\{\begin{array}{l}
x=y \tan \left(15^{\circ}\right) \\
2 x=(18-y) \tan \left(17^{\circ}\right)
\end{array}\right.\right. \\
& 2 y \tan \left(15^{\circ}\right)=18^{\circ} \cdot \tan \left(17^{\circ}\right)-y \tan \left(17^{\circ}\right)
\end{aligned} \begin{aligned}
& 2 y \tan \left(15^{\circ}\right)+y \tan \left(17^{\circ}\right)=18 \tan \left(17^{\circ}\right) \\
& y\left(2 \tan \left(15^{\circ}\right)+\tan \left(17^{\circ}\right)\right)=18 \tan \left(17^{\circ}\right) \\
& y=\frac{18 \tan \left(17^{\circ}\right)}{2 \tan \left(15^{\circ}\right)+\tan \left(17^{\circ}\right)} \\
& x=\frac{18 \tan \left(17^{\circ}\right)}{2 \tan \left(15^{\circ}\right)+\tan \left(17^{\circ}\right)} \cdot \tan \left(15^{\circ}\right) \approx 1.75 \mathrm{~km}
\end{aligned}
$$

