Lesson 2

Read Chapter 2

Coordinate systems

Distance formula

Rectilinear motion

Sarah can bicycle around a path, with constant speed, in two hours and 40 min . If she decreases her speed by $1 \mathrm{~km} / \mathrm{hr}$ her time increases by 4 min . How long is the path ?

$$
d=v t
$$

In order to set up a 1D coordinate system you need:

- Origin
- Unit

In order to set up a 2D coordinate system you need:

- Origin
- Axes
- Units on axes

Distance formula

The distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Suppose at time $t=2$ an object starts moving from $P(100,1)$ with velocity -30 mph along the horizontal line $y=1$; its x and y coordinate at time t are:

Suppose at time t_{1} an object starts moving from $P(a, b)$ with velocity v_{x} along the horizontal line $y=b$; its x coordinate at time t is:

$$
x=a+v_{x}\left(t-t_{1}\right)
$$

Suppose at time t_{1} an object starts moving from $P(a, b)$ with velocity v_{y} along a vertical line $x=a$; its y coordinate at time t is:

$$
y=b+v_{y}\left(t-t_{1}\right)
$$

Example

Ann and Bob start moving at the same time from the same location. Ann moves East at 6 feet $/ \mathrm{sec}$. Bob moves North at 5 feet/sec.
What is the distance between Ann and Bob 10 sec later ? When is the distance between Ann and Bob 50 feet?

