Lesson 17

Finish Chapter 13. Domain, Range

Read Chapter 15

Angles. Arclength, Area of Wedges

How to graph $a f(b x+c)+d$

1. Graph $y=f(x)$ Horizontally :
2. Shift $|c|$ units, left if c is positive, right if c is negative.
3. Scale horizontally of a factor $\frac{1}{|b|}$ (compression if $|b|>1$, expansion if $|b|<1$)
4. Reflect across y axis if b is negative. Skip this step if b is positive.
Vertically:
5. Scale by a factor of $|a|$ (compression if $|a|<1$, expansion if $|a|>1)$
6. Reflect across x axis if a is negative. Skip this step if a is positive.
7. Shift $|d|$ units, up if c is positive, down if c is negative.

Note: the order is important.

Sketch the graph of $g(x)=3|2 x-5|+1$

How to graph af(b(x+c))+d.

1. Graph $y=f(x)$ Horizontally:
2. Scale horizontally of a factor $\frac{1}{|b|}$. .(compression if $|b|>1$, expansion if $|b|<1$)
3. Reflect across y axis if b is negative. Skip this step if b is positive.
4. Shift $|c|$ units, left if c is positive, right if c is negative. Vertically:
5. Scale by a factor of $|a|$ (compression if $|a|<1$, expansion if $|a|>1)$
6. Reflect across x axis if a is negative. Skip this step if a is positive.
7. Shift $|d|$ units, up if c is positive, down if c is negative.

Note: the order is important.

Sketch the graph of $g(x)=3 e^{2(x-5)}+1$

f is even if $f(x)=f(-x)$.
$E X: \cos x$ is even
f is odd if $f(x)=-f(-x)$.
$E X: \sin x$ is odd

Suppose $f(x)$ has domain $1 \leq x \leq 5$ and range $2 \leq y \leq 9$ What is the domain and range of $g(x)=3 f(6 x-1)+8$?

An angle is the part of the plane in between two half lines starting at the same points. Angles are measured in degrees or radians. Certain precalculus/calculus formulas assume angles are measured in radians, so we often use radians as units.

$$
\begin{aligned}
360 \mathrm{deg} & =2 \pi \mathrm{rad} \\
180 \mathrm{deg} & =\pi \mathrm{rad} \\
90 \mathrm{deg} & =\frac{\pi}{2} \mathrm{rad} \\
60 \mathrm{deg} & =\frac{\pi}{3} \mathrm{rad} \\
45 \mathrm{deg} & =\frac{\pi}{4} \mathrm{rad} \\
30 \mathrm{deg} & =\frac{\pi}{6} \mathrm{rad} \\
\mathrm{deg} & =\frac{360}{2 \pi} \mathrm{rad} \\
\mathrm{rad} & =\frac{2 \pi}{360} \mathrm{deg}
\end{aligned}
$$

If we measure angles in degrees, then $\frac{1}{60}$ of a degree is a minute and $\frac{1}{60}$ of a minute is a second. Convert 0.3 rad into deg, min, second.

Arclength

$$
\ell=r \theta
$$

θ measured in radians
$1 \mathrm{rad}=$ angle that corresponds to an arc of the unit circle with length 1

Area of wedge

θ measured in radians

Given that θ is $\frac{\pi}{6}$ red and the circle has radius $r=3$, what is the perimeter of the sector ?

A pizza of radius 8 in is divided into 8 equal slices. Tom eats A and Bob eats B. Who eats more ?

