Lesson 17

Read Chapter 13

Graphical tools

Motivation
In an old problem we considered graphing $y=1-|x|$.
(1)

$$
y=|x|
$$

(2)
(3)

Goals

Draw the graph of $\operatorname{af}(\mathrm{bx}+\mathrm{c})+\mathrm{d}$ from the graph of $\mathrm{f}(\mathrm{x})$
Find the formula for the function whose graph is obtained from the graph of $f(x)$ by performing a series of graphical operations (shifts, reflections and scalings)

Which graphs should you know to start with?
Linear functions, quadratic functions, exponential functions, $\ln x$, $\sqrt{x} \quad,|x|$

Domain $[0,+\infty$)
Range $[0,+\infty)$

Vertical translation

Given $f(x)=x^{2}$, what do the graph of

$$
y=f(x)+5 \text { and }
$$

$$
y=f(x)-5
$$

look like ?

Vertical Reflections

Given $f(x)=|x|$
what does the graph of $y=-|x|$ looks like?

Vertical scaling (expansion or compression)

Given $f(x)=\sin x$ what do the graphs of

$$
y=-2 \delta(x)+3
$$

Vertical translation up 3 units
refeect/on

$$
\begin{aligned}
& \text { scel:nf } \\
& \text { verticen sactor of } 2
\end{aligned}
$$

In which order?

$$
y=1-|x| \quad W R O N G \text { ORDER }
$$

(1)

reflect ecross x exis WRONG GRAPH:
when $x=1 \quad y$ should be 0

Horizontal translation

Given $f(x)=x^{2}$ what do the graph of
$f(x+5)=$
and $f(x-5)=$
look like ?

Horizontal Reflections

Given $f(x)=2^{x}$ what does the graph of

$f(-x)=\quad$ looks like ?

Horizontal scaling (expansion or compression)

Given $f(x)=x^{2}-1$ what do the graphs of
$p(x)=f\left(\frac{x}{2}\right)=$
and of $q(x)=f\left(\frac{x}{\frac{1}{2}}\right)$

look like ?

How to graph $a f(b x+c)+d$

1. Graph $y=f(x)$ Horizontally :
2. Shift $|c|$ units, left if c is positive, right if c is negative.
3. Scale horizontally of a factor $\frac{1}{|b|}$ (compression if $|b|>1$, expansion if $|b|<1$)
4. Reflect across y axis if b is negative. Skip this step if b is positive.
Vertically:
5. Scale by a factor of $|a|$ (compression if $|a|<1$, expansion if $|a|>1)$
6. Reflect across x axis if a is negative. Skip this step if a is positive.
7. Shift $|d|$ units, up if c is positive, down if c is negative.

Note: the order is important.

How to graph af(b(x+c))+d.

1. Graph $y=f(x)$ Horizontally:
2. Scale horizontally of a factor $\frac{1}{|b|}$. .(compression if $|b|>1$, expansion if $|b|<1$)
3. Reflect across y axis if b is negative. Skip this step if b is positive.
4. Shift $|c|$ units, left if c is positive, right if c is negative. Vertically:
5. Scale by a factor of $|a|$ (compression if $|a|<1$, expansion if $|a|>1)$
6. Reflect across x axis if a is negative. Skip this step if a is positive.
7. Shift $|d|$ units, up if c is positive, down if c is negative.

Note: the order is important.

Sketch the graph of $g(x)=3|2 x-5|+1$

Sketch the graph of $g(x)=3 e^{2(x-5)}+1$

f is even if $f(x)=f(-x)$.
$E X: \cos x$ is even
f is odd if $f(x)=-f(-x)$.
$E X: \sin x$ is odd

