Lesson 15

Read Chapter 12

Logarithms

Other log functions

$\log _{a} x$ is the inverse of a^{x}

properties of log

- $\ln x^{y}=y \ln x$
$-\log _{b} x=\frac{\ln x}{\ln b}$
- $a^{x}=e^{(\ln a) x}$
- $\ln (x y)=\ln (x)+\ln (y)$
- $\ln \frac{x}{y}=\ln x-\ln y$
- $\ln 1=0$
- $\ln \frac{1}{x}=-\ln x$

Solve the following equations

1. $5 e^{x-4}=2$
2. $53^{x-4}=2$

Solve the following equations

1. $5 \ln (5 x+2)=3$
2. $\log _{2}(5 x+2)=3$

Exponential functions in standard form

$$
f(x)=A_{0} a^{x}
$$

or

$$
f(x)=A_{0} e^{(\ln a) x}=e^{k x}
$$

$$
\begin{aligned}
& \text { Rewrite in e form } \\
& \text { - } y=57^{t} \\
& -y=\frac{3}{2^{3 t-1}}
\end{aligned}
$$

4:18 PM Wed Oct 27

- $f(x)=2^{x}$

Input.

Doubling time

Given an exponential function $f(t)=A_{0} a^{t}$, its doubling time is the period of time required for f to double in value.

The doubling time for $f(x)=A_{0} a^{x}$ is $\frac{\ln 2}{\ln a}$

Tripling time

Given an exponential function $f(t)=A_{0} a^{t}$, its tripling time is the period of time required for f to double in value.
The tripling time for $f(x)=A_{0} a^{x}$ is

Half life

Given an exponential function $f(t)=A_{0} a^{t}$, its half life is the period of time required for f to half in value.
The for $f(x)=A_{0} a^{x}$ is

Exponential modelling problems

Exponential modelling problems are problems that talk about a quantity that grows or decays exponentially. Your task is to find a formula $f(x)=A_{0} a^{x}$ for the quantity as a function of some variable x and use the formula to answer the questions in the problem.

Usually given

1) 2 points
2) 1 point and doubling / tripling... time

Find a formula for the exponential function that passes through the points $(0,2)$ and $(3,5)$

Find a formula for the exponential function that passes through the points $(1,2)$ and $(4,5)$

Find a formula for the exponential function that passes through $(1,2)$ and has doubling time 80 .

