

 $\log_a x$ is the inverse of a^x

properties of log

$$\ln x^{y} = y \ln x$$

$$\log_{b} x = \frac{\ln x}{\ln b}$$

$$a^{x} = e^{(\ln a)x}$$

$$\ln(xy) = \ln(x) + \ln(y)$$

$$\ln \frac{x}{y} = \ln x - \ln y$$

$$\ln 1 = 0$$

$$\ln \frac{1}{x} = -\ln x$$

590

Ð,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

Solve the following equations
1.
$$5e^{x-4} = 2$$

2. $53^{x-4} = 2$

Solve the following equations

1.
$$5\ln(5x+2) = 3$$

2.
$$log_2(5x+2) = 3$$

5900

王

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

Exponential functions in standard form

$$f(x) = A_0 a^x$$

or

$$f(x) = A_0 e^{(\ln a)x} = e^{kx}$$

5900

王

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ →

Rewrite in e form
•
$$y = 57^t$$

• $y = \frac{3}{2^{3t-1}}$

Doubling time

Given an exponential function $f(t) = A_0 a^t$, its doubling time is the period of time required for f to double in value.

5900

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

The doubling time for $f(x) = A_0 a^x$ is $\frac{\ln 2}{\ln a}$

590

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Tripling time

Given an exponential function $f(t) = A_0 a^t$, its tripling time is the period of time required for f to double in value. The tripling time for $f(x) = A_0 a^x$ is

5900

Half life

Given an exponential function $f(t) = A_0 a^t$, its half life is the period of time required for f to half in value. The tripling target for $f(x) = A_0 a^x$ is

5900

王

Exponential modelling problems

Exponential modelling problems are problems that talk about a quantity that grows or decays exponentially. Your task is to find a formula $f(x) = A_0 a^x$ for the quantity as a function of some variable x and use the formula to answer the questions in the problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Find a formula for the exponential function that passes through the points (0, 2) and (3, 5)

5900

æ.

▲□▶ < □▶ < □▶ < □▶ < □▶</p>

Find a formula for the exponential function that passes through the points (1, 2) and $(\mathbf{2}, 5)$

SQ (~

Ξ.

▲□▶ ▲□▶ ▲□▶ ▲□▶

Find a formula for the exponential function that passes through (1, 2) and has doubling time 80.

5900

æ.

▲□▶ < □▶ < □▶ < □▶ < □▶</p>