Lesson 14

Read Chapter 10

Exponential functions

From Past time

$$
f(x)=\frac{2}{x-6} \quad \begin{aligned}
& \text { Domain }(-\infty, 6) \cup(6,+\infty) \\
& \text { RANGE }(-\infty, 0) \cup(0+\infty)
\end{aligned}
$$

Invertible? yes f^{-1} : Domain $(-\infty, 0) \cup(0,+\infty)$
Range $(-\infty, 6) \cup(6,+\infty)$

Formula: $\quad y=\frac{2}{x-6}$

$$
\begin{aligned}
& (x-6) \cdot y=2 \\
& (x-6)=\frac{2}{y} \\
& x=6+\frac{2}{y} \quad f^{-1}(y)=6+\frac{2}{y}
\end{aligned}
$$

Explain why $f(x)=-2 x^{2}+60 x$ is not invertible.

What is the inverse of $f(x)=-2 x^{2}+60 x$ on $[15,+\infty)$

What is the inverse of $f(x)=-2 x^{2}+60 x$ on $(-\infty, 15]$

Suppose p is the price of an item and $q=f(p)$ is the number of items sold at that price. Explain in words the meaning of: $f(25)$
$f^{-1}(30)$

Function in standard exponential form : $f(x)=A_{0} a^{x} \quad, a>0$ and $a \neq 1$

$$
f(0)=A_{0}
$$

$A_{0}>0 \quad Q>1$

Useful algebra

1. $a^{x+y}=a^{x} a^{y}$
2. $a^{-x}=\frac{1}{a^{x}}$
3. $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$
4. $a^{x y}=\left(a^{x}\right)^{y}$

Put $f(x)=3 \cdot 2^{-x+\frac{1}{2}}$ in standard exponential form

Put $f(x)=\frac{5}{3^{2 x-10}}$ in standard exponential form

Graph of $f(x)=e^{x}$

Invertible?
$\ln x$ is the inverse of e^{x}. This means

$$
\begin{aligned}
\ln e^{x} & =x \\
e^{\ln y} & =y
\end{aligned}
$$

If $e^{x}=y$ then $x=\ln y$ and vice-versa

