Lesson 13

Read Chapter 9

Inverse function

$$
\begin{aligned}
& |1-|x||=\left\{\begin{array}{l}
|1-x| \text { if } x \geqslant 0 \\
|1+x| \text { if } x<0 \\
-(1-x) \text { if } 1-x \leq 0 \text { and } x \geqslant 0 \\
1-x \geqslant 0 \text { if } x \geq 0 \\
-(1+x) \text { if } 1+x<0 \text { and } x<0
\end{array}\right. \\
& |1-|x||=\left\{\begin{array}{rr}
1-x & i \rho \\
-1+x & i \rho \\
1+x & i \rho
\end{array}\right. \\
& \begin{array}{lcl}
1 & 1 & 1 \\
-1 & 0 & 1
\end{array}
\end{aligned}
$$

Ch 9 Inverse junctions

$$
f(x)=2 x
$$

Formula $f(x)=2 x$ for $f(x)$

Formule for

$$
f^{-1}(y)
$$

Inverse function

Range

$$
o f \delta^{-1}
$$

Domain of

$$
f^{-1}
$$

- The graph of $f^{-1}(y)$ is the graph of $f(x)$ flipped around the line $y=x$
- Domain $f^{-1}=$ Range f. Range $f^{-1}=$ Domain f
- To find a formula for f^{-1} set $y=f(x)$ and solve for x

Does $f(x)=x^{2}$ have an incerse function?

Domain:
Range:

Given $g(x)=2 x-1$ on the domain $0 \leq x \leq 5$. Is g invertible? If it is find the inverse, its domain and its range

Given $f(x)=\frac{2}{x-6}$. Is g invertible ? If it is find the inverse, its domain and its range

Explain why $f(x)=-2 x^{2}+60 x$ is not invertible.

What is the inverse of $f(x)=-2 x^{2}+60 x$ on $[15,+\infty)$

What is the inverse of $f(x)=-2 x^{2}+60 x$ on $(-\infty, 15]$

Suppose p is the price of an item and $q=f(p)$ is the number of items sold at that price. Explain in words the meaning of: $f(25)$
$f^{-1}(30)$

Graphs for Ch 9 problem 1
b) $h(x)=\frac{a}{x+b}$

c) $g(x)=a \sqrt{b-x}+C$

