Lesson 12

Read Chapter 8

Composition

You have 720 m of fencing with which to build 3 enclosures. Two are identical squares and one is a rectangle that is twice as long as it is wide. What should the dimensions of the squares be, in order to to minimize the combined area of all three enclosures ? What should the dimensions of the squares be, in order to maximize the combined area of all three enclosures?

From last time:

$$
A(x)=\frac{50}{9} x^{2}-640 x+28800
$$

$$
720=8 x+6 y
$$

How about maximizing area?

An American Airlines plane is flying North at a speed of 200 mph . At time $t=0$ it is located 100 mi South of a control tower. A United Airlines plane is flying in a straight line towards the control tower with a speed of $130 \mathrm{mi} /$ hour. At time $t=0$ it is located 50 mi East and 100 mi South of the control tower. When are the planes closest? How close do they get?

$$
\begin{aligned}
& d=\sqrt{50^{2}+120^{2}}=130 \\
& t_{2}=\frac{130}{130}=1
\end{aligned}
$$

UN: $x(t)=50+\frac{0-50}{1-0} t$
$y(t)=-120+\frac{0-(-120)}{1-0} t$

$$
\begin{aligned}
& A A(0,-100+200 t) \quad U A=(50-50 t,-120+120 t) \\
& d(t)=\sqrt{(50-50 t)^{2}+(-100+200 t-(-120+120 t))^{2}} \quad \text { Minimize } d(t)
\end{aligned}
$$

Simplify

$$
d(t)=\sqrt{8900 t^{2}-1800 t+2900}
$$

1) For which value of t is $d(t)$ minimum?
2) What is minimum distance?
3) Trick Pook et $d^{2}(t)=8900 t^{2}-1800 t+2900$ min for $t=\frac{1800}{2.8900} \approx 0.1$

Why? For positive values squaring does not change order

Ex: | t | $f(t)$ | $f^{2}(t)$ |
| :---: | :---: | :---: |
| 1 | 5 | 25 |
| 2 | 2 | 4 |
| 3 | 1 | 1 |
| 4 | 7 | 49 |

2) Compute $d(0.1)=\sqrt{8900(0.1)^{2}-1800.0 .1+2900} \approx 53 \mathrm{miles}$

What is a function?

$$
g(f(x)) \text { in pictures }
$$

Example $f(x)=x^{2}+1, \quad g(x)=2 x+3$
$g(f(x))=$

$$
f(g(x))=
$$

Suppose $f(x)$ is the profit made by selling x barrels of apples and $g(x)$ is the number of barrels of apples produced by x trees.
Explain in words the meaning of $f(g(x))$

$$
\begin{aligned}
& \text { Example } f(x)=\left\{\begin{array}{ll}
x+1 & \text { if } x \leq 0 \\
2 x^{2}+x+1 & \text { if } x>0
\end{array} \quad g(x)=2 x+3\right. \\
& g(f(x))= \\
& f(g(x))=
\end{aligned}
$$

Write the following functions as composition of two functions: $e^{x^{3}}$
$\sqrt{x^{3}+1}$
$f(x)=|1-|x||$ find a multipart formula for f (no 11 there) and draw the graph of f.

