Lesson 11

Chapter 7. Min/max problems

Parabola through three points
Find the equation of the parabola through $(1,2),(-1,1)$ and $(2,3)$

Start with standard form:

$$
y=a x^{2}+b x+c
$$

plug in all three points to get three equations.

$$
\begin{aligned}
& 2=a \cdot 1^{2}+b \cdot 1+c \\
& 1=a(-1)^{2}+b(-1)+c \\
& 3=a \cdot 3^{2}+b \cdot 3+c
\end{aligned}
$$

Solve a system

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 2 = a + b + c } \\
{ 1 = a - b + c } \\
{ 3 = 4 a + 2 b + c }
\end{array} \quad \left\{\begin{array}{l}
a=2-b-c \\
1=(2-b-c)-b+c \\
3=4(2-b-c)+2 b+c
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ Q = 2 - b - c } \\
{ 1 = 2 - 2 b } \\
{ 3 = 8 - 2 b - 3 c }
\end{array} \quad \left\{\begin{array}{l}
Q=2-b-c \\
b=\frac{1}{2} \\
3=8-2\left(\frac{1}{2}\right)-3 c
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ a = 2 - b - c } \\
{ b = \frac { 1 } { 2 } } \\
{ \frac { 3 - 8 + 1 } { 3 } = c }
\end{array} \quad \left\{\begin{array}{l}
b=\frac{1}{2} \\
c=\frac{4}{3} \\
e=2-\frac{1}{2}-\frac{4}{3}=\frac{1}{6}
\end{array}\right.\right. \\
& y=\frac{1}{6} x^{2}+\frac{1}{2} x+\frac{4}{\frac{3}{311}}
\end{aligned}
$$

A min/max problem is a modeling problem where you need to minimize/maximize a quantity q.
In this class $q=q(x)=a x^{2}+b x+c$
The min / max usually is at the vertex of the parabola

To solve a min/max problem

- Choose your variables and find a formula for $\mathrm{q} . \mathrm{q}=\mathrm{q}(\mathrm{x})$.
- In $120 \mathrm{q}(\mathrm{x})$ should involve a quadratic function. Usually you find \max / min by finding the vertex.
- Pay attention whether the problem is asking for an x value (h) or a q value (k) or both.

Issues-tricks

- The quantity is a distance given by a formula : $q=\sqrt{\cdots x \cdots}$.
- q depends on more than one variable. $\mathrm{q}=\mathrm{q}(\mathrm{x}, \mathrm{y})$.
- Min/max not at vertex.

Rosalie is organizing a circus performance to raise money for a charity. She is trying to decide how much to charge for tickets.
From past experience she knows that the number of tickets sold is a linear function of the price. If she charges 5 dollars per ticket, she can sell 1000 tickets, if she charges 7 dollars she can only sell 900 tickets. How much should she charge per ticket to make the most money ?

You have 720 m of fencing with which to build 3 enclosures. Two are identical squares and one is a rectangle that is twice as long as it is wide. What should the dimensions of the squares be, in order to to minimize the combined area of all three enclosures ? What should the dimensions of the squares be, in order to maximize the combined area of all three enclosures ?

An American Airlines plane is flying North at a speed of 200 mph . At time $t=0$ it is located 100 mi South of a control tower. A United Airlines plane is flying in a straight line towards the control tower with a speed of $130 \mathrm{mi} /$ hour. At time $t=0$ it is located 50 mi East and 100 mi South of the control tower. When are the planes closest? How close do they get?

$$
\begin{aligned}
& d=\sqrt{50^{2}+120^{2}}=130 \\
& t_{2}=\frac{130}{130}=1
\end{aligned}
$$

UN: $x(t)=50+\frac{0-50}{1-0} t$
$y(t)=-120+\frac{0-(-120)}{1-0} t$

$$
\begin{aligned}
& A A(0,-100+200 t) \quad U A=(50-50 t,-120+120 t) \\
& d(t)=\sqrt{(50-50 t)^{2}+(-100+200 t-(-120+120 t))^{2}} \quad \text { Minimize } d(t)
\end{aligned}
$$

Simplify

$$
d(t)=\sqrt{8900 t^{2}-1800 t+2900}
$$

