Lesson 9

Finish Chapter 6
$|a x+b|$

Midterm problems

NAME (First,Last) : \qquad

UW email: \qquad

Student ID \qquad

Section \qquad

- Please write your name as it appears in Canvas.
- IMPORTANT: Write your NAME (first, last) on top of every odd page of this exam.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough. Your work needs to be neat and legible.
- The only calculator allowed is the TI 30X IIS. You are allowed an $8 x 11$ sheet of notes, written both sides. Do not turn in your sheet of notes.
- IMPORTANT : you are allowed to use scratch paper, do not turn in any scratch paper.
- Unless stated otherwise, you MUST show work for credit.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Unless the problem gives you different instructions, you can give exact answers or round off your answers to 2 decimal places.
- Box your final answer, when appropriate.
- Your exam should have 3 pages, printed double sided, with only the last half page left blank. Please check you have a complete exam.
- Raise your hand if you have a question.

Midterm review

A has coordinates $(1,0)$
Line $C B$
c hes coordinates $(3,2)$

Find the equation of the tangent to the circle et B

1) Find x
a) $r=d(A, C)=\sqrt{(3-1)^{2}+(2-0)^{2}}$

$$
=\sqrt{8}
$$

b) $(x-3)^{2}+(y-2)^{2}=8$
c) $(x-3)^{2}+(0-2)^{2}=8$
solve for x

$$
\begin{aligned}
& (x-3)^{2}=8-4=4 \\
& (x-3)= \pm \sqrt{4} \\
& (x-3)= \pm 2 \\
& x=3 \pm 2=5
\end{aligned}
$$

B $(5,0)$
Find equation of L

1) B is on \angle
2) slope of $L=m=-\frac{1}{\substack{\text { slope } \\ C B}}$

$$
C(3,2) \quad B(5,0)
$$

slope of $C B=\frac{2-0}{3-5}=-1$

$$
m=-\frac{1}{-1}=1
$$

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=0+1 \cdot(x-5) \\
& y=x-5
\end{aligned}
$$

Example of multipart function (ch 6 not in midterm)

$$
k(1)=3
$$

Example

$$
\begin{aligned}
& 121=2 \\
& 1-21=-(-2)
\end{aligned}
$$

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ \underline{\underline{-x}} & \text { if } x<0\end{cases}
$$

$$
y=|x|
$$

How to graph $y=|f(x)|$

Ex:

Flip parts of graph of $y=f(x)$ that ere below x axis aboce

$$
x \text { axis }
$$

How to solve an equation involving $|f(x)|$

$$
\cdots|f(x)| \cdots=
$$

splits into two ports

1) $\cdots f(x) \ldots=\cdots$
keep only solutions x such that $f(x) \geqslant 0$
2) $\ldots-f(x) \cdots=\cdots$
keep only solutions x s.t $f(x) \leqslant 0$

Ann is located 3 mi east of a statue. At time $t=0$ she starts walking in a straight line, at a speed of 5 mph , to a point located 4 mi North of the statue. Assume Ann keeps walking forever.

1. Find the parametric equations of motion for Ann.
2. Assume Bob stands still by the statue for thêtrst 30 min , then he moves North at 6 mph (forever) with a speed of 6 mph . Find all times $t \geq 0$ when Ann and Bob are 2.8 miles apart.

$$
\begin{aligned}
t_{2}-t_{1} & =\frac{d}{r} \\
d & =\sqrt{(3-0)^{2}+(4-0)^{2}} \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
& x_{A}(t)=3+v_{x}(t-0) \\
& y_{A}(t)=0+v_{y}(t-0)
\end{aligned}
$$

$$
t_{2}-0=\frac{5}{5}=1
$$

$$
\begin{aligned}
& v_{x}=\frac{0-3}{1-0}=-3 \quad \frac{3-0}{0-1}=-3 \\
& v_{y}=\frac{4-0}{1-0}=4 \\
& x_{A}(t)=\frac{3-3 t}{4 t} \quad t \geqslant 0 \\
& y_{A}(t) \quad \text { for } \\
& x(t)=x_{0}+\frac{\tilde{x}_{1}-x_{0}}{t_{1}-t_{0}}\left(t-t_{0}\right) \\
& y(t)=y_{0}+\underbrace{t_{1}-t_{0}}_{y_{1}-y_{0}}\left(t-t_{0}\right)
\end{aligned}
$$

Ann at $(3-3 t, 4 t) \quad \operatorname{Bob}$ at $\left(0,6\left(t-\frac{1}{2}\right)\right)$

$$
\begin{array}{ll}
d(A, B)=\sqrt{(3-3 t)^{2}+\left(4 t-6\left(t-\frac{1}{2}\right)\right)^{2}}=2.8 \\
(3-3 t)^{2}+(-2 t+3)^{2}=2.8^{2} \\
9-18 t+9 t^{2}+4 t^{2}-12 t+9-7.84=0 \\
13 t^{2}-30 t+10.16=0 \quad t=\frac{30 \pm \sqrt{30^{2}-4 \cdot 13 \cdot 10.16}}{2.13}=1.9,0.1
\end{array}
$$

Is there a time $0 \leq t \leq 0.5$ thet works? Ann $(3-3 t, 4 t)$ Bob $(0,0)$

$$
\begin{aligned}
& \sqrt{(3-3 t)^{2}+(4 t)^{2}}=2.8 \quad \text { For } 0 \\
& (3-3 t)^{2}+(4 t)^{2}=2.8^{2} \\
& 9-18 t+9 t^{2}+16 t^{2}-7.84=0 \\
& 25 t^{2}-18 t+1.16=0 \\
& t=\frac{18 \pm \sqrt{18^{2}-4.25 .1 .16}}{2.25}=0.07,0.15
\end{aligned}
$$

Is there a time when Ann is 2.8 m from

$$
\left.(0,4)^{2}\right|_{A_{t=0}^{t=1}} ^{C_{5}^{t}} 5 \mathrm{mph}
$$

In order to be 2.8 miles from β

Ann has to travel $5-2.8=2.2 \mathrm{mi}$ or $5+2.8=7.8 \mathrm{mi}$

50 she reaches C et $\frac{2.2}{5}$
D et $\frac{7.8}{5}$

$$
\begin{aligned}
& A(3-3 t, 4 t) \quad B(0, G) \\
& d(A, B)=2.8 \quad \sqrt{(3-3 t-0)^{2}+(G t-4)^{2}}=2.8 \\
& (3-3 t)^{2}+(4 t-4)^{2}=2.8^{2} \\
& 9-18 t+9 t^{2}+16 t^{2}-32 t+16-2.8^{2}=0 \\
& 25 t^{2}-50 t+17.16-0 \\
& t=\frac{50 \pm \sqrt{2500-1716}}{50}=\frac{58}{50}
\end{aligned}
$$

