Lesson 7

Finish Chapter 4, start Chapter 5

Parametric equations of motion

Functions,domain range

Uniform linear motion

$$
\begin{aligned}
x(t) & =x_{0}+? ? \\
y(t) & =y_{0}+? ? \\
d & =w\left(t-t_{1}\right) \\
d & =v\left(t-t_{1}\right)
\end{aligned}
$$

$$
x(t)=x_{0}+w\left(t-t_{1}\right)
$$

$$
\begin{aligned}
& x(t)=x_{0}+v_{x}\left(t-t_{1}\right) \\
& y(t)=y_{0}+v_{y}\left(t-t_{1}\right)
\end{aligned}
$$

Parametric equations. Uniform rectilinear motion.

Suppose an object is at $\left(x_{1}, y_{1}\right)$ at time t_{1} and it moves along a straight line at constant speed v.
The parametric equations of motion of the object are :

$$
x(t)=x_{1}+v_{x}\left(t-t_{1}\right), \quad y(t)=y_{1}+v_{y}\left(t-t_{1}\right)
$$

for t and t_{1} greater than the time when the object started moving, where v_{x} is the horizontal component of the velocity and v_{y} is the vertical component of the velocity.

You can calculate v_{x} and v_{y} in different ways, depending on what the problem gives you:

- If you also know the object is at $Q\left(x_{2}, y_{2}\right)$ at time t_{2} then

$$
\begin{aligned}
& v_{x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}\left(\frac{\Delta x}{\Delta t}\right) \\
& v_{y}=\frac{y_{2}-y_{1}}{t_{2}-t_{1}}\left(\frac{\Delta y}{\Delta t}\right) \frac{d}{t}
\end{aligned}
$$

skip for now

$$
\begin{aligned}
& v_{x}=v \cos (\theta) \\
& v_{y}=v \sin (\theta)
\end{aligned}
$$

Note: in many problems time t_{1} is just the initial time so $t_{1}=0$ in which case you have

$$
x=x_{1}+v_{x} t, \quad y=y_{1}+v_{y} t
$$

Alice is running at a speed of 5 mph starting at $P(1,3)$ along the line $y=2 x+1$ in the NE direction. What are Alice' s parametric equations of motion?

$$
\begin{aligned}
& v_{x}=\frac{2-1}{\frac{\sqrt{5}}{5}-0}=\frac{1}{\frac{\sqrt{5}}{5}}=\frac{5}{\sqrt{5}}=\frac{\sqrt{5} \cdot \sqrt{5}}{\sqrt{5}}=\sqrt{5} \\
& v_{y}=\frac{5-3}{\frac{\sqrt{5}}{5}-0}=\frac{2}{\frac{\sqrt{5}}{5}}=2 \cdot \frac{5}{\sqrt{5}}=2 \cdot \sqrt{5}
\end{aligned}
$$

$x(t)=1+\sqrt{5} t$
$y(t)=3+2 \sqrt{5} t$$\quad$ for any t when Alice is moving

$$
t \geq 0
$$

For this problem not a general rule

When is Alice 's 4 mi away from the point $R(2,2)$?
At time t Ala is ot $(1+\sqrt{5} t, 3+2 \sqrt{s} t)$

When the distance between Alice's position ($1+\sqrt{5} t, 3+2 \sqrt{5} t$)
and $R(2,2)$ is 4 .

$$
\sqrt{(1+\sqrt{5} t-2)^{2}+(3+2 \sqrt{5} t-2)^{2}}=4
$$

solve for t

1) Square both sides
2) Simplify, expend squares, bring eurytin on the Pa gt
3) Use quedretic for mule on

$$
\begin{gathered}
a t^{2}+b t+c=0 \\
(\sqrt{5} t-1)^{2}=5 t^{2}-2 \cdot \sqrt{5} t+1
\end{gathered}
$$

Solutions $t=-0 / 840.66$

What is a function?

all possible in puts
all possible outputs

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

Not 2 function
Ranges

$$
y=x^{2}
$$

Function

Interval notation

$(2,3)$ means all x with $2<x<3$
[2,3] means all x with $2 \leq x \leq 3$
$[2,3)$ means all x with $2 \leq x<3$
$(-\infty,+\infty)$ means all x in R
$(2,+\infty) \quad 2<x$

