

 $X(t) = X_0 + V_X(t-t_1)$ $Y(t) = Y_0 + V_y(t-t_1)$

Parametric equations. Uniform rectilinear motion.

Suppose an object is at (x_1, y_1) at time t_1 and it moves along a straight line at constant speed v.

The parametric equations of motion of the object are :

×(t)# =
$$x_1 + v_x(t - t_1)$$
, y(e)# = $y_1 + v_y(t - t_1)$

for t and t_1 greater than the time when the object started moving, where v_x is the horizontal component of the velocity and v_y is the vertical component of the velocity.

SQ (V

<ロ> <四> <四> <四> <四> <四> <四> <四> <四> <四</p>

You can calculate v_x and v_y in different ways, depending on what the problem gives you :

Λ

Note: in many problems time t_1 is just the initial time so $t_1 = 0$ in which case you have

$$x = x_1 + v_x t, \qquad y = y_1 + v_y t$$

5900

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Alice is running at a speed of 5mph starting at
$$P(1, 3)$$
 along the
line $y = 2x + 1$ in the NE direction. What are Alice's parametric
equations of motion?
Prick a point
a on Rine
Ex: $x = 2$
 $y = 2 \cdot 2 + 1 = 5$
 $z = 1 + V_x (t - 0)$
 $y(t) = 3 + V_y (t - 0)$
 $y(t) = 1 + V_y (t - 0)$
 $y(t) = 3 + V_y (t - 0)$
 $y(t) = 1 + V_y (t - 0)$
 $y(t) = 1$

$$V_{x} = \frac{2-1}{\frac{\sqrt{5}}{5}-0} = \frac{1}{\frac{\sqrt{5}}{5}} = \frac{5}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}}$$

$$V_{y} = \frac{5-3}{\frac{\sqrt{5}}{5}-0} = \frac{2}{\frac{\sqrt{5}}{5}} = 2 \cdot \frac{5}{\sqrt{5}} = 2 \cdot \sqrt{5}$$

$$x(e) = 1 + \sqrt{5}t$$

$$y(e) = 3 + 2\sqrt{5}t$$

$$A^{2}(e) = 3 + 2\sqrt{5}t$$

$$A^{2}(e) = 3 + 2\sqrt{5}t$$

$$A^{2}(e) = 3 + 2\sqrt{5}t$$

$$\frac{1}{2} = 0$$

$$\frac{1}{2} = 0$$
For this problem not a general rule

>

and R(2,2) is G.

 $(\sqrt{5t} - 1)^2 = 5t^2 - 2 \cdot \sqrt{5t} + 1$ solutions $t = -3\sqrt{4}$

Interval notation

(2, 3) means all x with
$$2 < x < 3$$

[2, 3] means all x with $2 \le x \le 3$
[2, 3) means all x with $2 \le x < 3$
 $(-\infty, +\infty)$ means all x in R

$$(z, +\infty)$$
 $z < X$

590

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <