## Lesson 5

## Read Chapter 3

circles

Find the point $Q$ on the line $L: y=2 x+1$ that is closest to the point $P(3,0)$.


$$
y=m x+b
$$

when $x=0$

$$
y=1
$$

When $x=1$
$y=3$

1) Find equation of $L_{z}$, line $\perp L$ through $P$
2) $Q$ is the intersection of $C$ and $L_{1}$

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=0-\frac{1}{2}(x-3) \\
& L_{1} \perp L^{\prime \prime} \text { hes slope } 2 \\
& \text { II slope } \\
& m=\frac{1}{2}
\end{aligned}
$$

To find $(x, y)$ coordinates of $?$ solve

$$
\begin{cases}y=2 x+1 & 2 x+1=-\frac{1}{2}(x-3) \\ y=-\frac{1}{2}(x-3) & \text { solve for } x \\ & x=1 / 5\end{cases}
$$

$$
\begin{aligned}
& y=2 \cdot \frac{1}{5}+1=\frac{7}{5} \\
& Q\left(\frac{1}{5}, \frac{7}{5}\right)
\end{aligned}
$$

What is the distance of $P$ from L ?
Calculate $d(P, Q)$
Ch $43 d$ ) golf course

Equation of a circle

$$
d(l, C)=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}=r_{0}
$$

The circle has center $\left(x_{0}, y_{0}\right)$ and radius $r$.
A point $P\left(x_{1}, y_{1}\right)$
is on the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}=r^{2} \quad$ Standard form
is inside the circle if: $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}<r^{2}$
is out side the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}>r^{2}$

Find the center and radius of the circle

$$
\begin{aligned}
& \frac{1}{3}\left(3 x^{2}+18 x+3 y^{2}-6 y+6\right)=0 \cdot \frac{1}{3} \\
& x^{2}+6 x+y^{2}-2 y+(2)=0 \\
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \\
& \left.x^{2}-2 x_{0} x+y^{2}-2 y_{0} y-x_{0}^{2}+y_{0}^{2}-r^{2}\right)=0 \\
& -2 y_{0}=-2 \\
& x_{0}=6 \\
& x_{0}=-\frac{1}{2} \cdot 6=-3 \quad y_{0}=-\frac{1}{2}(-2)=1 \\
& (-3,1)
\end{aligned}
$$

$$
\begin{gathered}
x_{0}^{2}+y_{0}^{2}-r^{2}=2 \\
(-3)^{2}+(1)^{2}-2=r^{2} \\
8=r^{2} \\
\sqrt{8}=r \\
1 \cdot x^{2}+a x+b y^{2}+b y+c=0
\end{gathered}
$$

is the equation of a circle with center at $x_{0}=-\frac{a}{2}, y_{0}=-\frac{b}{2}$ and radius $r=\sqrt{\frac{a^{2}}{4}}+\underset{x_{0}^{2}}{\frac{b^{2}}{4}-c}$

Intersection of a line and a circle
Find the intersection of the unit circle and the line $y=x+\frac{1}{2}$
Center $(0,0) \quad r=1$

$$
\begin{aligned}
& (x-0)^{2}+(y-0)^{2}=1^{2} \\
& \left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
y=x+\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
y=x+\frac{1}{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
y=x+\frac{1}{2} \\
x^{2}+\left(x+\frac{1}{2}\right)^{2}=1
\end{array}\right. \\
& x^{2}+x^{2}+x+\frac{1}{4}-1=0
\end{aligned} \begin{aligned}
& 2 x^{2}+x-\frac{3}{4}=0 ; \frac{x=-1 \pm \sqrt{1+6}}{4}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { If } x=\frac{-1+\sqrt{7}}{4} \quad y=\frac{-1+\sqrt{7}}{4}+\frac{1}{2} & P=\left(\frac{-1+\sqrt{7}}{4}, \frac{1}{4}+\frac{\sqrt{7}}{4}\right) \\
\text { if } x=\frac{-1-\sqrt{7}}{4}, y=\frac{-1-\sqrt{7}}{4}+\frac{1}{2} & Q\left(\frac{-1-\sqrt{7}}{4}, \frac{1}{4}-\frac{\sqrt{7}}{4_{1}}\right)
\end{array}
$$



Tangent intersects curve in two points.

Tangent to a circle
Fact: if a line $L$ is tangent to a circle at $P$, then the line is perpendicular to the radius $C P$.

$$
\left(y-(-21)^{2}\right.
$$

Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ at the point $P(1,-1)$

$$
\begin{aligned}
& C(3,-2) \\
& r=\sqrt{5}
\end{aligned}
$$

2023-10-06 10:15:07
$L \perp$ line $P C$
$P$ is on $\angle$

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=-1+2)(x-1)
\end{aligned}
$$

slope of line $p \subset \quad \frac{\Delta y}{\Delta x}=\frac{-1-(-2)}{1-3}$

$$
\begin{aligned}
& =-\frac{1}{2} \\
& m=-\frac{1}{-\frac{1}{2}}=2
\end{aligned}
$$

Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ through the point $Q(0,8)$


