Lesson 5

Read Chapter 3

circles

Find the point Q on the line L: y=2x+1 that is closest to the point

P(3,0).

When X=0

$$y = 1$$

When X=1

1) Find equation of Lz, line I through P

is the intersection of

$$y = y_0 + m (x - x_0)$$

$$y = 0 - \frac{1}{2} (x - 3)$$

$$L_1 \perp L_1$$

$$hos slope 2$$

$$has slope 2$$

$$has slope 2$$

$$m = -\frac{1}{2}$$

$$To find (x, y) coordinates of 2

$$solve \begin{cases} y = 2x + 1 & 2x + 1 = -\frac{1}{2}(x - 3) \\ y = -\frac{1}{2}(x - 3) & solve for x \\ x = 1/5 \end{cases}$$$$

$$3 = \frac{2 \cdot \frac{1}{5}}{5} + 1 = \frac{7}{5}$$

$$Q(\frac{1}{5}, \frac{7}{5})$$
What is the distance of P
$$3 \cdot \frac{1}{5}$$
Calculate d (P, Q)
$$Ch(\frac{1}{5}, \frac{7}{5})$$
Ch(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}}
$$\frac{1}{5}$$

$$\frac{1}{5}$$

$$\frac{7}{5}$$

Equation of a circle

$$d(P, C) = \sqrt{(x-x_0)^2+(y-y_0)^2} = r^{\bullet}$$

The circle has center (x_0, y_0) and radius r.

A point $P(x_1, y_1)$

- is on the circle if: $(x_1 x_0)^2 + (y_1 y_0)^2 = r^2$ 5 tanderd form
- is inside the circle if: $(x_1 x_0)^2 + (y_1 y_0)^2 < r^2$
- is out side the circle if $(x_1 x_0)^2 + (y_1 y_0)^2 > r^2$

Find the center and radius of the circle

$$\frac{1}{3} (3x^2 + 18x + 3y^2 - 6y + 6) = 0 \cdot \frac{1}{3}$$

$$x^2 + 6x + y^2 - 2y + 2 = 0$$

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

$$\frac{x_{0}^{2} + 4y_{0}^{2} - r^{2}}{(-3)^{2} + (1)^{2} - 2} = r^{2}$$

$$8 = r^{2}$$

$$\sqrt{8} = r$$

$$\int x^2 + ax + y^2 + by + c = 0$$

is the equation of a circle with center at $x_0 = -\frac{a}{2}$, $y_0 = -\frac{b}{2}$ and radius $r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} - c}$

Intersection of a line and a circle

Find the intersection of the unit circle and the line $y = x + \frac{1}{2}$

$$(X-0)^{2} + (y-0)^{2} = 1^{2}$$

$$\int x^2 + y^2 = 1$$

$$\int y = x + 1$$

$$\begin{cases} x^2 + y^2 = 1 \\ y = x + \frac{1}{2} \end{cases}$$

$$\begin{cases} 3 = x + \frac{1}{2} \\ x^2 + \left(x + \frac{1}{2}\right)^2 = 1 \end{cases}$$

$ f \times = -\frac{1+\sqrt{7}}{4}$	$y = -\frac{1+\sqrt{7}}{4} + \frac{1}{2}$	$P = \left(\frac{-1+\sqrt{7}}{4}\right)$	1 + 17 /

$$13 \times = \frac{-1-\sqrt{7}}{4}, y = \frac{-1-\sqrt{7}}{4} + \frac{1}{2}$$

$$Q \left(\frac{-1-\sqrt{7}}{4}, \frac{1}{4} - \frac{\sqrt{7}}{4} \right)$$

Tangent intersects curve in

Fact: if a line L is tangent to a circle at P, then the line is perpendicular to the radius *CP*. $(y-(-2))^2 - (y+2)^2 = 5 \text{ at}$

the point P(1,-1)

$$C(3,-2)$$

L I line PC
P is on L

$$y = y_0 + m(x - x_0)$$
 $y = -1 + 2(x - 1)$

Slope of line PC

 $\frac{\Delta y}{\Delta x} = \frac{-1 - (-2)}{1 - 3}$
 $\frac{1}{2}$
 $\frac{1}{2}$

