Lesson 4

Read Chapter 3
lines ardrizeles

Tricky version

$$
t=0 .
$$

Bob is standing 10 feet North of Ann, when Ann starts moving East at 6 feet/sec. 15 seconds later Bob, starts moving North at 5 feet $/ \mathrm{sec}$. When is the distance between Ann and Bob 50 feet ?

$$
\begin{aligned}
& x_{A}(t)=6 t \\
& y_{A}(t)=0
\end{aligned}
$$

valid for $t \geqslant 0$

$$
(6 t, 0)
$$

$$
\begin{aligned}
& x_{B}(t)=0 \\
& y_{B}(t)=10+5(t-15)
\end{aligned}
$$

valid for $t \geqslant 15$
($0,10+5(E-15)$)
For $t=5 \quad(30,0)$
for $t=5(0,-4,0)$.
We went $d((6 t, 0)(0,10+5(t-15)))=50$

$$
50=\sqrt{(6 t-0)^{2}+\left(0-\left(10+5(t-15)^{2}\right.\right.}
$$

do the algebra.... $t=5,5.66$
Can I accept these solutions? No DISCARD BOTH

There is no time $t \geq 0$ when the distance between $A_{n n}$ and Bob is so ft?
$A n n$

$$
\begin{aligned}
& x_{A}(t)=6 t \\
& y_{A}(t)=0
\end{aligned}
$$

for $t \geqslant 0$

$$
(6 t, 0)
$$

$$
50=\sqrt{10^{2}+(6 t)^{2}}
$$

for $0 \leq t \leq 15$ (0,10)

Ann et ($6 t, 0$) Bob at $(0,10)$

$$
\begin{aligned}
& 50=\sqrt{(6 t)^{2}+10^{2}} \\
& 2500=36 t^{2}+100 \\
& 2400=36 t^{2} \\
& \pm \sqrt{\frac{2400}{36}}=t \quad \text { drscerd negetive solution } \\
& \sqrt{\frac{2400}{36}} \approx 8.16 \mathrm{sec}
\end{aligned}
$$

Chepter 3:

Greph of a function

Equation:

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right) \\
& \left(1^{2}+0^{2}\right)^{2}=\left(1^{2}-0^{2}\right) \quad V \\
& \left.2^{2}+3^{2}\right)^{2}=\left(2^{2}-3^{2}\right) \times \\
& \text { FUn } c+1 \text { on }
\end{aligned}
$$

$$
\begin{gathered}
y=\begin{array}{c}
\text { expre ssion in } x \\
\text { Just one }
\end{array} \\
\hline
\end{gathered}
$$

$\begin{array}{l}\text { it } \\ \text { ve }\end{array}$	$\begin{aligned} \text { passes ticel linetest }\end{aligned}$
Example of function	

$$
\begin{aligned}
& f(x)=x^{2} \\
& y=x^{2}
\end{aligned}
$$

function

$$
\begin{aligned}
& y=1^{2}=1 \\
& y=2^{2}=4
\end{aligned}
$$

Is every line the graph of a function?

$$
y=m x+b
$$

Any line but a vertical line is the graph

Lines equations
for eng line as long es we w he
don't here both $a=0$ and $b=0$

$$
\begin{aligned}
& \text { point slope }
\end{aligned}
$$

slope of a line $=m$

$$
\begin{aligned}
y & =m x+b \\
\text { Ex } y & =2 x+1
\end{aligned}
$$

$$
y=y_{1}+m\left(b-x_{1}\right)
$$

$$
\begin{aligned}
& m_{1}=\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}=\frac{\text { rise }}{\text { run }} \\
& m_{2}=\frac{\Delta y}{\Delta x} \quad m_{2}>m_{1} \\
& m=0
\end{aligned}
$$

slope is negetive

Useful facts about lines

1. Two lines $L_{1}: y=m_{1} x+b_{1}$ and
$L_{2}: y=m_{2} x+b_{2}$ are parallel iff $m_{1}=m_{2}$.
2. Two lines $L_{1}: y=m_{1} x+b_{1}$ and
$L_{2}: y=m_{2} x+b_{2}$ are perpendicular iff $m_{1}=-\frac{1}{m_{2}}$
3. The slope of the line through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$
4. The equation of a line through $P\left(x_{0}, y_{0}\right)$ with slope m is $y=y_{0}+m\left(x-x_{0}\right)$
5. The equation of the line through point $\mathrm{P}=\left(x_{0}, y_{0}\right)$ and $\mathrm{Q}=\left(x_{1}, y_{1}\right)$ is $y=y_{0}+\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)$ if $x_{1}-x_{2} \neq 0$ and $y=x_{1}$ if $x_{1}=x_{0}$.
