3. Jack is standing on a cliff 15 feet above the sea. The kicks a ball into the sea. The height of the ball above the sea t seconds after being kicked, is described by a quadratic function h(t).
You know that h(t) = 15 and that the ball reaches its maximum height of 35 feet above the sea T seconds after being kicked.
(a) Find a formula for h(t).
h(t) =
$$\alpha$$
 (t - 7)² + 35
 $15 = \alpha$ (∞ - 7)² + 35
 $-20 = 49 \alpha$ $\alpha = -\frac{20}{49}$
(b) Find the time t₄ when the ball hits the water.
h(t) = 0
 $-\frac{20}{49}$ (t - 7)² + 35 = $0 - 7$ $\frac{49}{49} \cdot 35 = \frac{20}{49}$ (t - 7)²
 $\frac{49}{49} \cdot \frac{49}{20} = \frac{1}{20} + \frac{2}{20}$
(c) At what time, when the ball is going up, is it 30 feet above the sea?
 $t_1 = 7 + \sqrt{\frac{49}{20} \cdot 35} = \frac{1}{20} + \frac{1}{20} +$

 $h(t) = at^2 + bt + c$ stendord $a(t-h)^2 + k$ vertex form

6 Mrs. Peacock is standing in the study, where a candlestick is positioned on the floor.

Mrs. Peacock is 165 centimeters tall. The candlestick is 20 centimeters tall, and it's holding a candle which is 10 centimeters tall.

Let θ be the angle of elevation of Mrs. Peacock's head relative to the top of the candle, as shown in the picture below.

(a) **[5 points]** Mrs. Peacock measures θ to be 50°.

How far away from the candlestick is she?

(In other words, what's x?)

(b) [5 points] The candle burns at a constant speed. After 1 minute, the angle *θ* is 51°. When will the candle burn all the way down?

$$y(t) = length of candle et time t$$

Want time when $y(t) = 0$
 $y(t) = b + mt$ (0, 10) (1,?)
Figure out $y(1)$

- $\frac{2}{113.278} = \tan(51^{\circ}) \qquad 2 = 113.278 \tan(51) \approx 139.8867$
- $w = 165 139.8867 \approx 25.1133$ y(1) = 25.1133 - 20 = 5.1133
- y(t) = 10 + mt
 - (0, 10) (1, S.1133)
 - $m = \frac{10 5.1133}{0 1} = -4.8867$
 - y(E) = 10 4.8867 t
 - went
 - 0 = 10 4.8867 6
 - 4.8867t = 10