3. Jack is standing on a cliff 15 feet above the sea. He kicks a ball into the sea. The height of the ball above the sea t seconds after being kicked, is described by a quadratic function $\mathrm{h}(\mathrm{t})$. You know that $\mathrm{h}(0)=15$ and that the ball reaches its maximum height of 35 feet above the sea 7 seconds after being kicked.
(a) Find a formula for $\mathrm{h}(\mathrm{t})$.

$$
\begin{aligned}
& h(t)=a(t-7)^{2}+35 \\
& 15=a(0-7)^{2}+35 \\
& -20=49 a \quad a=-\frac{20}{49}
\end{aligned}
$$

(b) Find the time t_{1} when the ball hits the water.

$$
\begin{aligned}
& h(t)=0 \\
& -\frac{20}{49}(t-7)^{2}+35=0 \rightarrow \frac{49 \cdot 35}{20}=\frac{25}{49}(t-7)^{2} \\
& 7 \pm \sqrt{\frac{49 \cdot 35}{20}}=t=7 \quad t_{1}=7+\sqrt{\frac{49 \cdot 35}{20}} \mathrm{sec}
\end{aligned}
$$

(c) At what time, when the ball is going up, is it 30 feet above the sea?

$$
t_{1}=7+\frac{7}{2} \sqrt{7}
$$

$h(t)=30$ Solve for t

$$
\begin{aligned}
& h(t) \frac{20}{49}(t-7)^{2}+35=30 ; \frac{49 \cdot 5}{20}=\frac{20}{49}(t-7)^{2} \\
& 7 \pm \sqrt{\frac{49 \cdot 5}{20}}=t-7 \quad t_{2}=7-\sqrt{\frac{49}{4}}=7-\frac{7}{2}
\end{aligned}
$$

(d) Find a formula for the function $t=g(\mathbf{y})$, that gives you the time when the ball is going up and it is at an height y above the sea level. Give the domain and range for g.

$$
\begin{aligned}
& \text { Find the inverse of } y=h(t) \text { on [0 7] } \\
& g=h^{-1} \text { on }\left[\begin{array}{ll}
0 & 7
\end{array}\right] \\
& \text { Domain of } g=h^{-1}=\text { rene of } h \text { is }[15,35] \\
& \text { Range of } g=h^{-1}=\text { domain of } h[0,7] \\
& \leq t \leq 7
\end{aligned}
$$

To find a formula for g set $y=h(t)$ solve for t

$$
\begin{aligned}
& y=-\frac{20}{49}(t-7)^{2}+35 \\
& \frac{20}{49}(t-7)^{2}=(35-y) \frac{49}{20} \\
& t-7=7 \pm \sqrt{(35-y) \frac{49}{20}} \\
& g(y)=7-\sqrt{(35-y) \frac{49}{20}}
\end{aligned}
$$

times
height above see

$$
\begin{array}{rlr}
h(t)= & a t^{2}+b t+c \text { stenderd } \\
& a(t-h)^{2}+k \quad \text { vertex form }
\end{array}
$$

Mrs. Peacock is standing in the study, where a candlestick is positioned on the floor.
Mrs. Peacock is 165 centimeters tall. The candlestick is 20 centimeters tall, and it's holding a candle which is 10 centimeters tall.

Let θ be the angle of elevation of Mrs. Peacock's head relative to the top of the candle, as shown in the picture below.
(a) [5 points] Mrs. Peacock measures θ to be 50°. How far away from the candlestick is she?
(In other words, what's x ?)

$$
\begin{aligned}
& \tan \left(30^{\circ}\right)=\frac{135}{x} \\
& x=\frac{135}{\tan \left(50^{\circ}\right)}=113.278
\end{aligned}
$$

(b) [5 points] The candle burns at a constant speed. After 1 minute, the angle θ is 51°. When will the candle burn all the way down?

$$
y(t)=\text { length of candle et time } t
$$

want time when $g(t)=0$

$$
\begin{aligned}
& y(t)=b+m t \quad(0,10) \quad(1, ?) \\
& \text { Figure out } y(1)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{z}{113.278}=\tan \left(51^{\circ}\right) \quad z=113.278 \tan (5 i)= \\
& 139.8867 \\
& w=165-139.8867 \approx 25.1133 \\
& y(1)=25.1133-20=5.1133 \\
& y(t)=10+m t \\
& (0,10) \quad(1) 5.1133) \\
& m=\frac{10-5.1133}{0-1}=-4.8867 \\
& y(t)=10-4.8867 t
\end{aligned}
$$

went

$$
\begin{aligned}
0=10 & -4.8867 t \\
4.8867 t & =10 \\
t & =\frac{10}{4.8867} \approx 2.05 \mathrm{~min}
\end{aligned}
$$

