Lesson 26

Read Chapter 19 and 20
Sinusoidel functions
Sinusoidal equations

Sirs and

Graph $f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D \quad A, B>0$

$$
(0,0)(2 \pi, 0)(\pi, 0)\left(\frac{\pi}{2}, 0\right)\left(\frac{3}{2} \pi, 0\right)
$$

(2)
shigt right C units
 $\operatorname{cig} C \geqslant 0$
(3)
vertral scoling

(4)

Graph $\left.\delta(t)=\frac{{\underset{H}{A}}^{3}}{\sin } \frac{2 \pi}{\frac{2 \pi}{5}}\left(t-\underset{C}{-\frac{7}{4}}\right)\right)+\underset{D}{2}$ $y_{\text {max }}$
$y_{\min } \begin{aligned} & 2-3 \\ & D-A\end{aligned}$
D Draw $y=D$
2) Drew points $(C, D) \quad\left(C+\frac{B}{4}, D\right) \quad\left(C+\frac{B}{2}, D\right) \quad\left(C+\frac{3}{4} B, D\right)$

$$
(C+B)
$$

3) Draw points $\left(C+\frac{B}{4}, D+A\right),\left(C+\frac{3}{4} B, D-A\right)$
4) Draw basic S shape and repeat

Sinusoidal functions

$$
f(x)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D \quad A, B>0
$$

A: amplitude. Half total height $=\frac{y_{\max }-y_{\min }}{2}$ y coordi B: period. Horizontal distance between two consecutive peaks or point valleys, or double the horizontal distance between one peak and the next valley or one valley and the next peak.

C: phase shift. x-coordinate of max $-\frac{B}{4}$ or x-coordinate of a point half way (vertically) between a valley and a peak.
to left to right

D:mean. Half way vertical point $=\frac{y_{\text {max }}+y_{\text {min }}}{2}$.

Find a formula for the sinusoidal function below

$$
\begin{aligned}
& A=\frac{5-(-1)}{2}=3, \quad D=\frac{5+(-1)}{2}=2 \\
& B=2+3=5, \quad C=3-\frac{5}{4}=\frac{7}{4} \\
& { }_{B}=21 \\
& C_{1}=-2-\frac{5}{4}=-\frac{13}{4} \quad C_{2}=\frac{7}{4}+5
\end{aligned}
$$

solve $3 \sin \left(\frac{2 \pi}{5}\left(t-\frac{7}{4}\right)\right)+2=4 \quad\left[\right.$ rembermber $\left.\sin x=\frac{1}{2}\right]$
Find $A L L$ solutions

1) $3 / \sin \left(\frac{2 \pi}{5}\left(t-\frac{7}{4}\right)\right)=\frac{4-2}{3}=\frac{2}{3}$

$$
\begin{gathered}
\sin ^{-1}\left(\sin \left(\frac{2 \pi}{5}\left(t-\frac{7}{4}\right)\right)\right)=\sin ^{-1}\left(\frac{2}{3}\right) \\
\frac{2 \pi}{5}\left(t-\frac{7}{4}\right)=\sin ^{-1}\left(\frac{2}{3}\right) \\
t-\frac{7}{4}=\frac{5}{2 \pi} \sin ^{-1}\left(\frac{2}{3}\right) \\
t=\frac{7}{4}+\frac{5}{2 \pi} \sin ^{-1}\left(\frac{2}{3}\right)
\end{gathered}
$$

$$
t=p \approx 2.33 \text { (celc in red) }
$$

2) $2.33+{\underset{B}{E}, 5}_{\text {period }}^{\text {principal }} k=0, \pm 1, \pm 2, \cdots$.
3) Symmetry $s=t^{3+(3-2.33)}=3.67$
x coordinate of highest point immediately to the right of P
4) $3.67+5 k$

$$
f(t)=A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D
$$

principal solution always between

$$
C-\frac{B}{4} \text { and } C+\frac{B}{4}
$$

symmetry solution $S=x_{\text {max }}+x_{\text {max }}$-principal

$$
\begin{aligned}
& C+\frac{B}{4}+C+\frac{B}{4}-\text { principal } \\
S= & 2 C+\frac{B}{2}-\text { principal }
\end{aligned}
$$

$$
\sin x
$$

Other wey to find symmetry solution
Solve $\quad 3 \sin \left(\frac{2 \pi}{5}\left(t-\frac{7}{4}\right)\right)+2=4$

$$
\sin \left(\frac{\frac{2 \pi}{5}\left(\epsilon-\frac{7}{4}\right)}{\theta}\right)=\frac{2}{3} \quad \frac{5}{2 \pi} \sin ^{-1}\left(\frac{2}{3}\right)+\frac{7}{4}=p
$$

$\sin (\theta)=\frac{2}{3}$ principel $\sin ^{-1}\left(\frac{2}{3}\right)$
symmetry is $\theta=\pi-\sin ^{-1}\left(\frac{2}{3}\right)$

$$
\begin{aligned}
& \frac{2 \pi}{5}\left(t-\frac{7}{4}\right)=\pi-\sin ^{-1}\left(\frac{2}{3}\right) \quad \text { solue for } t \\
& t-\frac{7}{4}=\frac{5}{2 \pi}\left(\pi-\sin ^{-1}\left(\frac{2}{3}\right)\right) \\
& t=\frac{7}{4}+\frac{5}{2}-\frac{5}{2 \pi} \sin ^{-1}\left(\frac{2}{3}\right) \\
& \frac{\frac{7}{4}+\frac{7}{4}+\frac{5}{2}}{\frac{4 c}{2 c+3 / 2}}\left(\frac{5}{2 \pi}-\frac{7}{4} \sin ^{-1} \frac{2}{3}\right)
\end{aligned}
$$

How to solve $A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D=V$

- Do some algebra first: $\sin \left(\frac{2 \pi}{B}(x-C)\right)=\frac{V-D}{A}$
- Use arcsin: $\frac{2 \pi}{B}(x-C)=\arcsin \left(\frac{V-D}{A}\right)$
- Do some more algebra to solve for x : $x=C+\frac{B}{2 \pi} \arcsin \left(\frac{V-D}{A}\right)$.
- $x_{1}=C+\frac{B}{2 \pi} \arcsin \left(\frac{V-D}{A}\right)$ is the principal solution.
$C-\frac{B}{4} \leq x_{1} \leq C+\frac{B}{4}$
- All values $x_{1}+k B, k=0, \pm 1, \pm 2, \pm 3, \cdots$ are also solutions.
- The symmetry solution is $x_{2}=x_{\max }+\left(x_{\text {max }}-\right.$ principal $)$, where $x_{\text {max }}$ is the x coordinate of the first max to the right of C.
- All values $x_{2}+k B k=0, \pm 1, \pm 2, \pm 3, \cdots$ are also solutions.

WebAssign hew (ch 19 \#3)

The height of the rotating object above the x axis is a sinusoidal function

See Video on Week 10 module of cenver

Note:

$$
\begin{aligned}
& \cos x=\sin \left(x+\frac{\pi}{2}\right) \\
& \cos x=\sin \left(-x+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}-x\right)
\end{aligned}
$$

