Lesson 21

Read Chapter 17

Trigonometric functions. Triangle definition.

Problems involving two triangles

Two objects move around a circle. They start at the same time. Object 1 moves in the counterclockwise direction, with angular speed of $\frac{\pi}{50} \mathrm{rad} / \mathrm{sec}$; from where it starts it takes it 20 seconds to reach the easternmost part of the track. Object 2 moves in the clockwise direction, starting from the northernmost part of the track 's with a speed of 4 feet $/ \mathrm{sec}$. The two objects pass each other after 25 sec . What is object 1's starting position? (Give your answer as an angle). What is the radius of the track?

Want $\alpha . \quad \beta=\frac{\pi}{50} . S=\frac{\pi}{10}$

$$
\begin{aligned}
& \alpha=\frac{\pi}{2}-\beta=\frac{\pi}{2}-\frac{\pi}{10}=\frac{4}{10} \pi \\
& =\frac{2 \pi}{5} . \\
& \omega_{2}=\frac{\alpha}{25}=\frac{2 \pi}{5 \cdot 25} \\
& r=\frac{4}{2 \pi}=\frac{2 \xi \cdot 125}{125} \text { feet. }
\end{aligned}
$$

1) How do we distingursh the two angles?
2) What ere the coordinetes of A and B ?

Trig for angles $0<\theta<\frac{\pi}{2}$

$$
\begin{aligned}
& \sin \theta=\frac{b}{c}=\frac{B}{C} \\
& \cos \theta=\frac{a}{c} \\
& \tan \theta=\frac{b}{a}=\frac{\sin \theta}{\cos \theta}=\frac{\frac{b}{c}}{\frac{a}{c}}=\frac{b}{2} \cdot \frac{\ell}{a}
\end{aligned}
$$

$$
\begin{aligned}
& 45^{\circ} 60^{\circ} 30^{\circ} \\
& \theta=\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{6} \\
& \frac{1 \pi / 4}{a} a \\
& a^{2}+a^{2}=1 ; \quad 2 a^{2}=1 ; \quad a^{2}=\frac{1}{2} ; a=\frac{1}{\sqrt{2}} \\
& \sin \frac{\pi}{4}=\frac{a}{1}=\frac{1}{\sqrt{2}} \cos \frac{\pi}{4}=\frac{2}{1}=\frac{1}{\sqrt{2}} \quad \tan \frac{\pi}{4}=\frac{2}{2}=1 \\
& \frac{1}{\pi / 2 / 3 / 2}+1 \quad h^{2}+\left(\frac{1}{2}\right)^{2}=1 ; \quad h^{2}=1-\frac{1}{4} ; \quad h^{2}=\frac{3}{4} ; \quad h=\frac{\sqrt{3}}{2} \\
& \sin \frac{\pi}{3}=\frac{h}{1}=\frac{\sqrt{3}}{2} \cos \frac{\pi}{3}=\frac{\frac{1}{2}}{1}=\frac{1}{2} \quad \tan \frac{\pi}{3}=\frac{1}{\frac{1}{2}}=\frac{\sqrt{3}}{2} \cdot \frac{2}{1} \\
& \sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=h=\frac{\sqrt{3}}{2} \quad \tan \frac{\pi}{6}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{2} \cdot \frac{2}{\sqrt{3}}
\end{aligned}
$$

If $\alpha=1.3 \mathrm{rad}$, find x and y
$\frac{2}{\frac{\alpha}{x}} 1 y$

$$
\begin{aligned}
& \cos (1.3)=\frac{x}{2} \quad \underbrace{2 \cdot \cos (1.3)}_{\text {use cePculetor }}=x \\
& \sin (1.3)=\frac{y}{2}=2 \sin (1.3)=y
\end{aligned}
$$

If $\alpha=0.5 \mathrm{rad}$, find x and z

$$
\begin{aligned}
& \tan (0.5)=\frac{5}{x} \quad x \tan (0.5)=5 \\
& x=\frac{5}{\tan (0.5)} \\
& \sin (0.5)=\frac{5}{z} \quad z \cdot \sin (0.5)=5 \\
& z=\frac{5}{\sin (0.5)}
\end{aligned}
$$

3. Godzilla is attacking, but at the moment he is standing on top of a building downtown. You want to determine Godzilla's height, so you measure three angles. First, from a certain distance away from the building, you measure the angle the top of the building makes with the horizontal: $\theta_{1}=72^{\circ}$. You then move 50 meters farther from the building and measure the angle Godzilla's head makes with the horizontal: $\theta_{2}=74^{\circ}$. You then move 75 meters farther from the building and measure the angle the top of the building makes with the horizontal: $\theta_{3}=60^{\circ}$.
The figure may not be to scale.

$$
\begin{aligned}
& \frac{y}{z}=\tan \left(72^{\circ}\right) \\
& \frac{x+y}{z+50}=\tan \left(76^{\circ}\right) \\
& \frac{y}{z+50+75}=\tan \left(60^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{y}{z}=\tan \left(72^{\circ}\right) \\
\frac{x+y}{z+50}=\tan \left(74^{\circ}\right) \\
\frac{y}{z+125}=\tan \left(60^{\circ}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
y=z \tan \left(72^{\circ}\right) \\
x+y=(z+50) \tan \left(74^{\circ}\right) \\
z=(z+125) \tan \left(60^{\circ}\right) \\
z \tan \left(72^{\circ}\right)=z \tan \left(60^{\circ}\right)+125 \tan \left(60^{\circ}\right) \\
z\left(\tan \left(72^{\circ}\right)-\tan \left(60^{\circ}\right)\right)=125 \operatorname{ten}\left(60^{\circ}\right) \\
z=\frac{125 \tan \left(60^{\circ}\right)}{\tan \left(72^{\circ}\right)-\tan \left(60^{\circ}\right)} 2160.9
\end{array}\right. \\
& y=160.9 \operatorname{ten}\left(72^{\circ}\right) \approx 495.21
\end{aligned}
$$

