Lesson 20

Read Chapter 16

Circular motion

We consider an object going around a circle with constant speed.
T. Period: time it takes to go around circle once
ω. Angular speed/velocity, measures how fast angles are swept. Units rad/time, RPM
v. Linear speed/velocity, measures how fast distances are covered. Units distance/time

Uniform circular motion formulas

$r \theta=v t$

$r \underline{\omega}=v \not t$

A rotating sprinkle reaches 10 m far and completes a full revolution in 5 min . How much area does it irrigate in 2 min ? How long does it take the sprinkle to irrigate 50 square meters?

$$
h_{0} T=\frac{1}{10}{ }_{t=0} \omega=\frac{2 \pi}{5} \frac{\mathrm{rad}}{\min }
$$

formula from last week $A=\frac{1}{2} \theta r^{2}$

1) $\operatorname{Need} \theta$

$$
\begin{aligned}
& \theta=\omega \cdot t \\
& \theta=\frac{2 \pi}{5} \cdot 2=\frac{4 \pi}{5}
\end{aligned}
$$

$$
A=\frac{1}{2} \frac{4 \pi}{5} \cdot 10^{2} \mathrm{~m}^{2}
$$

2)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
A & =\frac{1}{2} r^{2} \omega t \\
5 \phi & =\frac{1}{2} \phi^{2} \cdot \frac{2 \pi}{8} \cdot t \\
\frac{5}{2 \pi} & =t \text { min }
\end{aligned}
$$

An object moves around a circle of radius 10 ft with $\omega=12$ RPM. Find its linear velocity in feet $/ \mathrm{sec}$. How many radians does the object turn in 3 sec ? What distance does it cover in 3 min ? How long does it take the object to move 3 feet ? How long does it take the object to turn an angle of 45° ? When the object has moved a distance of 5 feet, what angle has it turned ?

$\omega=12 \cdot 2 \pi \mathrm{rad} / \mathrm{min}$
$\omega=\frac{24 \pi}{60} \mathrm{red} / \mathrm{sec}$
(1)

$$
v=\omega r
$$

$$
v=\frac{2 q}{6 \varnothing} \pi \cdot x=4 \pi \mathrm{feet} / \mathrm{xec}
$$

$$
\theta=\frac{24 \pi}{60} \cdot 3 \mathrm{rad}
$$

(3)

$$
\begin{aligned}
& d=v \cdot t \\
& d=4 \pi \cdot 3.60 \quad \text { feet }
\end{aligned}
$$

(4)

$$
\begin{aligned}
d & =v t \\
3 & =4 \pi t \\
\frac{3}{4 \pi} & =t \quad \mathrm{sec}
\end{aligned}
$$

(5) $\theta=\omega t$

$$
\begin{aligned}
& 45^{\circ} \cdot \frac{2 \pi}{360}=\frac{\pi}{4} \\
& \frac{\pi}{4}=24 \pi \cdot t \\
& \frac{1}{4 \cdot 24}=t \quad \text { minutes } \\
& \text { 6 } \begin{aligned}
d & =r \cdot \theta \\
5 & =10 \cdot \theta \\
\frac{5}{10} & =\frac{1}{2}=\theta \text { red }
\end{aligned}
\end{aligned}
$$

Two objects move around a circle. They start at the same time. Object 1 moves in the counterclocktwise direction, with angular speed of $\frac{\pi}{50} \mathrm{rad} / \mathrm{sec}$; from where it starts it takes it 20 seconds to reach the easternmost part of the track. Object 2 moves in the clockwise direction, starting from the northernmost part of the track 's with a speed of 4 feet $/ \mathrm{sec}$. The two objects pass each other after 25 sec . What Is object 1's starting position ? (Give

$\theta=\frac{\pi}{50} \cdot 20=\frac{2}{5} \pi \mathrm{rad}$

$$
v_{2}=4 \mathrm{dt} x \mathrm{c}
$$

Finish next time

