Lesson 2 Read Chapter 2 Coordinate systems **Distance** formula Rectilinear motion 590 Sarah can bicycle around a path, with constant speed, in two hours and 40 min. If she decreases her speed by 1 km/hr her time increases by 4 min. How long is the path ?

t= 160 min dey 1 d = vtЬ der z d = V · 160 $d = (V - 1 \frac{Km}{60 \min}) 164 \min d$ $\int d = \frac{160}{4} = \frac{160}{60} -7 \frac{160}{60} = -7 \frac{160}{60} = \frac{160$ $\frac{164}{40} = 4 \vee -> \vee = \frac{164}{60 \cdot 4}$ $d = 160 \cdot \frac{166}{60 \cdot 6}$ Km

In order to set up a 2D coordinate system you need:

Distance formula

The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\int_{1}^{3} \frac{(x_2 - x_1)^2 + (y_2 - y_1)^2}{(x_1 - y_1)} \frac{(x_2 - y_1)}{(x_2 - x_1)} \frac{(y_2 - y_1)}{x_2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

5900

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Suppose at time t_1 an object starts-moving from P(a, b) with constant e moving velocity v_x along the horizontal line y = b; its x coordinate at time t is: while it is moving $x_{te} = a + v_x(t - t_1)$ Suppose at time t_1 an object starts moving from P(a, b) with velocity v_y along a vertical line x = a; its y coordinate at time t is: shile it is movies $y \in b + v_y(t - t_1)$

5900

3

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > <